import sys sys.path.append("../..") import lab0.src.dataset8 as dataset8 from sklearn import metrics from neupy import algorithms import numpy as np from lib.image import noise, get_pxs print( "\n\nИсследуем качество классификации на тестовой выборке содержащей зашумленные примеры" ) (x_train, y_train), (x_test, y_test) = dataset8.load_data(mode=0) pnn = algorithms.PNN(std=1, batch_size=128, verbose=False) pnn.train(x_train[0:10000], y_train[0:10000]) y_predicted = pnn.predict(x_test) local_path = 'my_images/' for nTest in np.arange(0, 10, 1): # convert to numpy array x = get_pxs(local_path + str(nTest) + '.png') # Inverting and normalizing image x = 255 - x x /= 255
# 1,2 initializing batch_size = 32 num_classes = 10 epochs = 10 lr = 0.01 verbose = 1 neurons_number = [256, num_classes] opt_name = "Adam" optimizer = Adam() goal_loss = 0.013 (x_train, y_train), (x_test, y_test) = dataset8.load_data(mode=2, show=True, show_indexes=[0, 1]) model = Sequential() model.add(Dense(neurons_number[0], input_dim=28**2, activation='relu')) model.add(Dense(neurons_number[1], activation='softmax')) # 3 setting stopper callbacks = [ EarlyStoppingByLossVal(monitor='val_loss', value=goal_loss, verbose=1) ] # 4 model fitting model.compile(optimizer=optimizer,