def test_shape_argument(self): small_x = [[1, 2, 3], [4, 5, 6]] large_x1 = [[1, 2, 3, 0], [4, 5, 6, 0], [0, 0, 0, 0], [0, 0, 0, 0]] y = fftn(small_x, shape=(4, 4)) assert_array_almost_equal(y, fftn(large_x1)) y = fftn(small_x, shape=(3, 4)) assert_array_almost_equal(y, fftn(large_x1[:-1]))
def test_definition(self): x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] y = fftn(x) assert_array_almost_equal(y, direct_dftn(x)) x = random((20, 26)) assert_array_almost_equal(fftn(x), direct_dftn(x)) x = random((5, 4, 3, 20)) assert_array_almost_equal(fftn(x), direct_dftn(x))
def test_definition(self): x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] y = fftn(np.array(x, np.float32)) if not y.dtype == np.complex64: raise ValueError("double precision output with single precision") y_r = np.array(fftn(x), np.complex64) assert_array_almost_equal_nulp(y, y_r)
def test_shape_axes_argument2(self): # Change shape of the last axis x = numpy.random.random((10, 5, 3, 7)) y = fftn(x, axes=(-1, ), shape=(8, )) assert_array_almost_equal(y, fft(x, axis=-1, n=8)) # Change shape of an arbitrary axis which is not the last one x = numpy.random.random((10, 5, 3, 7)) y = fftn(x, axes=(-2, ), shape=(8, )) assert_array_almost_equal(y, fft(x, axis=-2, n=8)) # Change shape of axes: cf #244, where shape and axes were mixed up x = numpy.random.random((4, 4, 2)) y = fftn(x, axes=(-3, -2), shape=(8, 8)) assert_array_almost_equal(y, numpy.fft.fftn(x, axes=(-3, -2), s=(8, 8)))
def test_shape_axes_argument(self): small_x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] large_x1 = array([[1, 2, 3, 0], [4, 5, 6, 0], [7, 8, 9, 0], [0, 0, 0, 0]]) # Disable tests with shape and axes of different lengths # y = fftn(small_x,shape=(4,4),axes=(-1,)) # for i in range(4): # assert_array_almost_equal (y[i],fft(large_x1[i])) # y = fftn(small_x,shape=(4,4),axes=(-2,)) # for i in range(4): # assert_array_almost_equal (y[:,i],fft(large_x1[:,i])) y = fftn(small_x, shape=(4, 4), axes=(-2, -1)) assert_array_almost_equal(y, fftn(large_x1)) y = fftn(small_x, shape=(4, 4), axes=(-1, -2)) assert_array_almost_equal( y, swapaxes(fftn(swapaxes(large_x1, -1, -2)), -1, -2))
def test_float16_input(self): for size in SMALL_COMPOSITE_SIZES + SMALL_PRIME_SIZES: np.random.seed(1234) x = np.random.rand(size, size) + 1j * np.random.rand(size, size) y1 = fftn(x.real.astype(np.float16)) y2 = fftn(x.real.astype(np.float64)).astype(np.complex64) assert_equal(y1.dtype, np.complex64) assert_array_almost_equal_nulp(y1, y2, 5e5) for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES: np.random.seed(1234) x = np.random.rand(size, 3) + 1j * np.random.rand(size, 3) y1 = fftn(x.real.astype(np.float16)) y2 = fftn(x.real.astype(np.float64)).astype(np.complex64) assert_equal(y1.dtype, np.complex64) assert_array_almost_equal_nulp(y1, y2, 2e6)
def fftconvolve(in1, in2, mode="full"): """Convolve two N-dimensional arrays using FFT. Convolve `in1` and `in2` using the fast Fourier transform method, with the output size determined by the `mode` argument. This is generally much faster than `convolve` for large arrays (n > ~500), but can be slower when only a few output values are needed, and can only output float arrays (int or object array inputs will be cast to float). As of v0.19, `convolve` automatically chooses this method or the direct method based on an estimation of which is faster. Parameters ---------- in1 : array_like First input. in2 : array_like Second input. Should have the same number of dimensions as `in1`. If operating in 'valid' mode, either `in1` or `in2` must be at least as large as the other in every dimension. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear convolution of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. Returns ------- out : array An N-dimensional array containing a subset of the discrete linear convolution of `in1` with `in2`. Examples -------- Autocorrelation of white noise is an impulse. >>> from scipy import signal >>> sig = np.random.randn(1000) >>> autocorr = signal.fftconvolve(sig, sig[::-1], mode='full') >>> import matplotlib.pyplot as plt >>> fig, (ax_orig, ax_mag) = plt.subplots(2, 1) >>> ax_orig.plot(sig) >>> ax_orig.set_title('White noise') >>> ax_mag.plot(np.arange(-len(sig)+1,len(sig)), autocorr) >>> ax_mag.set_title('Autocorrelation') >>> fig.tight_layout() >>> fig.show() Gaussian blur implemented using FFT convolution. Notice the dark borders around the image, due to the zero-padding beyond its boundaries. The `convolve2d` function allows for other types of image boundaries, but is far slower. >>> from scipy import misc >>> face = misc.face(gray=True) >>> kernel = np.outer(signal.gaussian(70, 8), signal.gaussian(70, 8)) >>> blurred = signal.fftconvolve(face, kernel, mode='same') >>> fig, (ax_orig, ax_kernel, ax_blurred) = plt.subplots(3, 1, ... figsize=(6, 15)) >>> ax_orig.imshow(face, cmap='gray') >>> ax_orig.set_title('Original') >>> ax_orig.set_axis_off() >>> ax_kernel.imshow(kernel, cmap='gray') >>> ax_kernel.set_title('Gaussian kernel') >>> ax_kernel.set_axis_off() >>> ax_blurred.imshow(blurred, cmap='gray') >>> ax_blurred.set_title('Blurred') >>> ax_blurred.set_axis_off() >>> fig.show() """ in1 = asarray(in1) in2 = asarray(in2) if in1.ndim == in2.ndim == 0: # scalar inputs return in1 * in2 elif not in1.ndim == in2.ndim: raise ValueError("in1 and in2 should have the same dimensionality") elif in1.size == 0 or in2.size == 0: # empty arrays return array([]) s1 = array(in1.shape) s2 = array(in2.shape) complex_result = (np.issubdtype(in1.dtype, np.complexfloating) or np.issubdtype(in2.dtype, np.complexfloating)) shape = s1 + s2 - 1 # Check that input sizes are compatible with 'valid' mode if _inputs_swap_needed(mode, s1, s2): # Convolution is commutative; order doesn't have any effect on output in1, s1, in2, s2 = in2, s2, in1, s1 # Speed up FFT by padding to optimal size for FFTPACK fshape = [fftpack.helper.next_fast_len(int(d)) for d in shape] fslice = tuple([slice(0, int(sz)) for sz in shape]) # Pre-1.9 NumPy FFT routines are not threadsafe. For older NumPys, make # sure we only call rfftn/irfftn from one thread at a time. if not complex_result and (_rfft_mt_safe or _rfft_lock.acquire(False)): try: sp1 = np.fft.rfftn(in1, fshape) sp2 = np.fft.rfftn(in2, fshape) ret = (np.fft.irfftn(sp1 * sp2, fshape)[fslice].copy()) finally: if not _rfft_mt_safe: _rfft_lock.release() else: # If we're here, it's either because we need a complex result, or we # failed to acquire _rfft_lock (meaning rfftn isn't threadsafe and # is already in use by another thread). In either case, use the # (threadsafe but slower) SciPy complex-FFT routines instead. sp1 = fftpack.fftn(in1, fshape) sp2 = fftpack.fftn(in2, fshape) ret = fftpack.ifftn(sp1 * sp2)[fslice].copy() if not complex_result: ret = ret.real if mode == "full": return ret elif mode == "same": return _centered(ret, s1) elif mode == "valid": return _centered(ret, s1 - s2 + 1) else: raise ValueError("Acceptable mode flags are 'valid'," " 'same', or 'full'.")
def test_random_complex(self): for size in [1, 2, 51, 32, 64, 92]: x = random([size, size]) + 1j * random([size, size]) assert_array_almost_equal_nulp(ifftn(fftn(x)), x, self.maxnlp) assert_array_almost_equal_nulp(fftn(ifftn(x)), x, self.maxnlp)
def test_axes_argument(self): # plane == ji_plane, x== kji_space plane1 = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] plane2 = [[10, 11, 12], [13, 14, 15], [16, 17, 18]] plane3 = [[19, 20, 21], [22, 23, 24], [25, 26, 27]] ki_plane1 = [[1, 2, 3], [10, 11, 12], [19, 20, 21]] ki_plane2 = [[4, 5, 6], [13, 14, 15], [22, 23, 24]] ki_plane3 = [[7, 8, 9], [16, 17, 18], [25, 26, 27]] jk_plane1 = [[1, 10, 19], [4, 13, 22], [7, 16, 25]] jk_plane2 = [[2, 11, 20], [5, 14, 23], [8, 17, 26]] jk_plane3 = [[3, 12, 21], [6, 15, 24], [9, 18, 27]] kj_plane1 = [[1, 4, 7], [10, 13, 16], [19, 22, 25]] kj_plane2 = [[2, 5, 8], [11, 14, 17], [20, 23, 26]] kj_plane3 = [[3, 6, 9], [12, 15, 18], [21, 24, 27]] ij_plane1 = [[1, 4, 7], [2, 5, 8], [3, 6, 9]] ij_plane2 = [[10, 13, 16], [11, 14, 17], [12, 15, 18]] ij_plane3 = [[19, 22, 25], [20, 23, 26], [21, 24, 27]] ik_plane1 = [[1, 10, 19], [2, 11, 20], [3, 12, 21]] ik_plane2 = [[4, 13, 22], [5, 14, 23], [6, 15, 24]] ik_plane3 = [[7, 16, 25], [8, 17, 26], [9, 18, 27]] ijk_space = [jk_plane1, jk_plane2, jk_plane3] ikj_space = [kj_plane1, kj_plane2, kj_plane3] jik_space = [ik_plane1, ik_plane2, ik_plane3] jki_space = [ki_plane1, ki_plane2, ki_plane3] kij_space = [ij_plane1, ij_plane2, ij_plane3] x = array([plane1, plane2, plane3]) assert_array_almost_equal(fftn(x), fftn(x, axes=(-3, -2, -1))) # kji_space assert_array_almost_equal(fftn(x), fftn(x, axes=(0, 1, 2))) assert_array_almost_equal(fftn(x, axes=(0, 2)), fftn(x, axes=(0, -1))) y = fftn(x, axes=(2, 1, 0)) # ijk_space assert_array_almost_equal(swapaxes(y, -1, -3), fftn(ijk_space)) y = fftn(x, axes=(2, 0, 1)) # ikj_space assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -1, -2), fftn(ikj_space)) y = fftn(x, axes=(1, 2, 0)) # jik_space assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -3, -2), fftn(jik_space)) y = fftn(x, axes=(1, 0, 2)) # jki_space assert_array_almost_equal(swapaxes(y, -2, -3), fftn(jki_space)) y = fftn(x, axes=(0, 2, 1)) # kij_space assert_array_almost_equal(swapaxes(y, -2, -1), fftn(kij_space)) y = fftn(x, axes=(-2, -1)) # ji_plane assert_array_almost_equal(fftn(plane1), y[0]) assert_array_almost_equal(fftn(plane2), y[1]) assert_array_almost_equal(fftn(plane3), y[2]) y = fftn(x, axes=(1, 2)) # ji_plane assert_array_almost_equal(fftn(plane1), y[0]) assert_array_almost_equal(fftn(plane2), y[1]) assert_array_almost_equal(fftn(plane3), y[2]) y = fftn(x, axes=(-3, -2)) # kj_plane assert_array_almost_equal(fftn(x[:, :, 0]), y[:, :, 0]) assert_array_almost_equal(fftn(x[:, :, 1]), y[:, :, 1]) assert_array_almost_equal(fftn(x[:, :, 2]), y[:, :, 2]) y = fftn(x, axes=(-3, -1)) # ki_plane assert_array_almost_equal(fftn(x[:, 0, :]), y[:, 0, :]) assert_array_almost_equal(fftn(x[:, 1, :]), y[:, 1, :]) assert_array_almost_equal(fftn(x[:, 2, :]), y[:, 2, :]) y = fftn(x, axes=(-1, -2)) # ij_plane assert_array_almost_equal(fftn(ij_plane1), swapaxes(y[0], -2, -1)) assert_array_almost_equal(fftn(ij_plane2), swapaxes(y[1], -2, -1)) assert_array_almost_equal(fftn(ij_plane3), swapaxes(y[2], -2, -1)) y = fftn(x, axes=(-1, -3)) # ik_plane assert_array_almost_equal(fftn(ik_plane1), swapaxes(y[:, 0, :], -1, -2)) assert_array_almost_equal(fftn(ik_plane2), swapaxes(y[:, 1, :], -1, -2)) assert_array_almost_equal(fftn(ik_plane3), swapaxes(y[:, 2, :], -1, -2)) y = fftn(x, axes=(-2, -3)) # jk_plane assert_array_almost_equal(fftn(jk_plane1), swapaxes(y[:, :, 0], -1, -2)) assert_array_almost_equal(fftn(jk_plane2), swapaxes(y[:, :, 1], -1, -2)) assert_array_almost_equal(fftn(jk_plane3), swapaxes(y[:, :, 2], -1, -2)) y = fftn(x, axes=(-1, )) # i_line for i in range(3): for j in range(3): assert_array_almost_equal(fft(x[i, j, :]), y[i, j, :]) y = fftn(x, axes=(-2, )) # j_line for i in range(3): for j in range(3): assert_array_almost_equal(fft(x[i, :, j]), y[i, :, j]) y = fftn(x, axes=(0, )) # k_line for i in range(3): for j in range(3): assert_array_almost_equal(fft(x[:, i, j]), y[:, i, j]) y = fftn(x, axes=()) # point assert_array_almost_equal(y, x)
def test_definition_float16(self): x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] y = fftn(np.array(x, np.float16)) assert_equal(y.dtype, np.complex64) y_r = np.array(fftn(x), np.complex64) assert_array_almost_equal_nulp(y, y_r)