def __init__(self, hparams, data_path=None): super(Model, self).__init__() self.hparams = hparams self.data_path = data_path self.T_pred = self.hparams.T_pred self.loss_fn = torch.nn.MSELoss(reduction='none') self.recog_net_1 = MLP_Encoder(64 * 64, 300, 3, nonlinearity='elu') self.recog_net_2 = MLP_Encoder(64 * 64, 300, 3, nonlinearity='elu') self.obs_net_1 = MLP_Decoder(1, 100, 64 * 64, nonlinearity='elu') self.obs_net_2 = MLP_Decoder(1, 100, 64 * 64, nonlinearity='elu') V_net = MLP(4, 100, 1) M_net = PSD(4, 300, 2) g_net = MatrixNet(4, 100, 4, shape=(2, 2)) self.ode = Lag_Net(q_dim=2, u_dim=2, g_net=g_net, M_net=M_net, V_net=V_net) self.link1_para = torch.nn.Parameter( torch.tensor(0.0, dtype=self.dtype)) self.train_dataset = None self.non_ctrl_ind = 1
def __init__(self, hparams, data_path=None): super(Model, self).__init__() self.hparams = hparams self.data_path = data_path self.T_pred = self.hparams.T_pred self.loss_fn = torch.nn.MSELoss(reduction='none') self.recog_q_net = MLP_Encoder(32*32, 300, 3, nonlinearity='elu') self.obs_net = MLP_Encoder(1, 100, 32*32, nonlinearity='elu') g_net = MLP(2, 50, 1) g_baseline_net = MLP(3, 100, 1) self.ode = Lag_Net(q_dim=1, u_dim=1, g_net=g_net, g_baseline=g_baseline_net, dyna_model='g_baseline') self.train_dataset = None self.non_ctrl_ind = 1
def __init__(self, hparams, data_path=None): super(Model, self).__init__() self.hparams = hparams self.data_path = data_path self.T_pred = self.hparams.T_pred self.loss_fn = torch.nn.MSELoss(reduction='none') self.recog_net_1 = MLP_Encoder(64*64, 300, 2, nonlinearity='elu') self.recog_net_2 = MLP_Encoder(64*64, 300, 3, nonlinearity='elu') self.obs_net = MLP_Decoder(3, 200, 3*64*64, nonlinearity='elu') V_net = MLP(3, 100, 1) ; M_net = PSD(3, 300, 2) g_net = MatrixNet(3, 100, 4, shape=(2,2)) self.ode = Lag_Net_R1_T1(g_net=g_net, M_net=M_net, V_net=V_net) self.train_dataset = None self.non_ctrl_ind = 1
def __init__(self, hparams, data_path=None): super(Model, self).__init__() self.hparams = hparams self.data_path = data_path self.T_pred = self.hparams.T_pred self.loss_fn = torch.nn.MSELoss(reduction='none') self.recog_net_1 = MLP_Encoder(64 * 64, 300, 2, nonlinearity='elu') self.recog_net_2 = MLP_Encoder(64 * 64, 300, 3, nonlinearity='elu') self.obs_net_1 = MLP_Decoder(1, 100, 64 * 64, nonlinearity='elu') self.obs_net_2 = MLP_Decoder(1, 100, 64 * 64, nonlinearity='elu') g_net = MatrixNet(3, 100, 4, shape=(2, 2)) g_baseline_net = MLP(5, 400, 2) self.ode = Lag_Net_R1_T1(g_net=g_net, g_baseline=g_baseline_net, dyna_model='g_baseline') self.train_dataset = None self.non_ctrl_ind = 1