def compute_steady_state_unemployment(c, T): """ Compute the steady state unemployment rate given c and T using lambda, the job finding rate, from the McCall model and then computing steady state unemployment corresponding to alpha, lambda, b, d. """ lmda = compute_lambda(c, T) lm = LakeModel(alpha=alpha, lmda=lmda, b=0, d=0) x = lm.rate_steady_state() e, u = x return u
def compute_steady_state_quantities(c, tau): """ Compute the steady state unemployment rate given c and tau using optimal quantities from the McCall model and computing corresponding steady state quantities """ w_bar, lmda, V, U = compute_optimal_quantities(c, tau) # Compute steady state employment and unemployment rates lm = LakeModel(alpha=alpha_q, lmda=lmda, b=b, d=d) x = lm.rate_steady_state() e, u = x # Compute steady state welfare w = np.sum(V * p_vec * (w_vec - tau > w_bar)) / np.sum(p_vec * (w_vec - tau > w_bar)) welfare = e * w + u * U return e, u, welfare
""" Agent dynamics the a lake model. """ import numpy as np import matplotlib.pyplot as plt from lake_model import LakeModel from quantecon import MarkovChain import matplotlib matplotlib.style.use('ggplot') lm = LakeModel(d=0, b=0) T = 5000 # Simulation length alpha, lmda = lm.alpha, lm.lmda P = [[1 - lmda, lmda], [alpha, 1 - alpha]] mc = MarkovChain(P) xbar = lm.rate_steady_state() fig, axes = plt.subplots(2, 1, figsize=(10, 8)) s_path = mc.simulate(T, init=1) s_bar_e = s_path.cumsum() / range(1, T + 1) s_bar_u = 1 - s_bar_e ax = axes[0] ax.plot(s_bar_u, '-b', lw=2, alpha=0.5) ax.hlines(xbar[1], 0, T, 'r', '--')
""" Stock dynamics the a lake model. """ import numpy as np import matplotlib.pyplot as plt from lake_model import LakeModel import matplotlib matplotlib.style.use('ggplot') lm = LakeModel() N_0 = 150 # Population e_0 = 0.92 # Initial employment rate u_0 = 1 - e_0 # Initial unemployment rate T = 50 # Simulation length E_0 = e_0 * N_0 U_0 = u_0 * N_0 fig, axes = plt.subplots(3, 1, figsize=(10, 8)) X_0 = (E_0, U_0) X_path = np.vstack(lm.simulate_stock_path(X_0, T)) ax = axes[0] ax.plot(X_path[:,0], '-b', lw=2, alpha=0.7) ax.set_title(r'Employment') ax = axes[1] ax.plot(X_path[:,1], '-b', lw=2, alpha=0.7) ax.set_title(r'Unemployment')
""" Stock dynamics the a lake model. """ import numpy as np import matplotlib.pyplot as plt from lake_model import LakeModel import matplotlib matplotlib.style.use('ggplot') lm = LakeModel() e_0 = 0.92 # Initial employment rate u_0 = 1 - e_0 # Initial unemployment rate T = 50 # Simulation length xbar = lm.rate_steady_state() fig, axes = plt.subplots(2, 1, figsize=(10, 8)) x_0 = (e_0, u_0) x_path = np.vstack(lm.simulate_rate_path(x_0, T)) ax = axes[0] ax.plot(x_path[:,0], '-b', lw=2, alpha=0.5) ax.hlines(xbar[0], 0, T, 'r', '--') ax.set_title(r'Employment rate') ax = axes[1] ax.plot(x_path[:,1], '-b', lw=2, alpha=0.5) ax.hlines(xbar[1], 0, T, 'r', '--') ax.set_title(r'Unemployment rate')
""" Stock dynamics the a lake model. """ import numpy as np import matplotlib.pyplot as plt from lake_model import LakeModel import matplotlib matplotlib.style.use('ggplot') lm = LakeModel() N_0 = 150 # Population e_0 = 0.92 # Initial employment rate u_0 = 1 - e_0 # Initial unemployment rate T = 50 # Simulation length E_0 = e_0 * N_0 U_0 = u_0 * N_0 fig, axes = plt.subplots(3, 1, figsize=(10, 8)) X_0 = (E_0, U_0) X_path = np.vstack(lm.simulate_stock_path(X_0, T)) ax = axes[0] ax.plot(X_path[:, 0], '-b', lw=2, alpha=0.7) ax.set_title(r'Employment') ax = axes[1] ax.plot(X_path[:, 1], '-b', lw=2, alpha=0.7) ax.set_title(r'Unemployment')
""" Agent dynamics the a lake model. """ import numpy as np import matplotlib.pyplot as plt from lake_model import LakeModel from quantecon import MarkovChain import matplotlib matplotlib.style.use('ggplot') lm = LakeModel(d=0, b=0) T = 5000 # Simulation length alpha, lmda = lm.alpha, lm.lmda P = [[1 - lmda, lmda], [alpha, 1 - alpha]] mc = MarkovChain(P) xbar = lm.rate_steady_state() fig, axes = plt.subplots(2, 1, figsize=(10, 8)) s_path = mc.simulate(T, init=1) s_bar_e = s_path.cumsum() / range(1, T+1) s_bar_u = 1 - s_bar_e ax = axes[0] ax.plot(s_bar_u, '-b', lw=2, alpha=0.5)