if opts.geo: dlon = -lal.GreenwichMeanSiderealTime(lal.LIGOTimeGPS(metadata['gps_time'])) % (2*np.pi) else: dlon = 0 # Convert sky map from probability to probability per square degree. probperdeg2 = skymap / hp.nside2pixarea(nside, degrees=True) # Plot sky map. vmax = probperdeg2.max() plot.healpix_heatmap( probperdeg2, dlon=dlon, nest=metadata['nest'], vmin=0., vmax=vmax) # Add colorbar. if opts.colorbar: cb = plot.colorbar() cb.set_label(r'prob. per deg$^2$') # Add contours. if opts.contour: cls = 100 * postprocess.find_greedy_credible_levels(skymap) cs = plot.healpix_contour( cls, dlon=dlon, nest=metadata['nest'], colors='k', linewidths=0.5, levels=opts.contour) fmt = r'%g\%%' if rcParams['text.usetex'] else '%g%%' plt.clabel(cs, fmt=fmt, fontsize=6, inline=True) # Add continents. if opts.geo: geojson_filename = os.path.join(os.path.dirname(plot.__file__), 'ne_simplified_coastline.json')
dlon = -lal.GreenwichMeanSiderealTime(lal.LIGOTimeGPS(metadata['gps_time'])) % (2*np.pi) else: dlon = 0 # Convert sky map from probability to probability per square degree. probperdeg2 = skymap / hp.nside2pixarea(nside, degrees=True) # Plot sky map. vmax = probperdeg2.max() plot.healpix_heatmap( probperdeg2, dlon=dlon, nest=metadata['nest'], vmin=0., vmax=vmax, cmap=plt.get_cmap(opts.colormap)) if opts.colorbar: # Plot colorbar. cb = plot.colorbar() # Set colorbar label. cb.set_label(r'prob. per deg$^2$') # Add contours. if opts.contour: indices = np.argsort(-skymap) region = np.empty(skymap.shape) region[indices] = 100 * np.cumsum(skymap[indices]) cs = plot.healpix_contour( region, dlon=dlon, nest=metadata['nest'], colors='k', linewidths=0.5, levels=opts.contour) fmt = r'%g\%%' if rcParams['text.usetex'] else '%g%%' plt.clabel(cs, fmt=fmt, fontsize=6, inline=True)