print("Theta1 (fraction of goodchannels above LT for design channel):" + str(theta1)) print("Theta2 (fraction of goodchannels above LT for other channel):" + str(theta2)) json.dump("Lambdathreshold:" + str(LT), f1) f1.write("\n") json.dump( "Theta1 (fraction of goodchannels above LT for design channel):" + str(theta1), f1) f1.write("\n") json.dump( "Theta2 (fraction of goodchannels above LT for other channel):" + str(theta2), f1) f1.write("\n") #=======================================================Simulation json.dump("{p:Fraction of good channels abov LT...}", f1) f1.write("\n") #-----------------------------------------checking channel #calculating P_all good could have been seperated for llrdict , but that takes longer time Fdict = lmb.frac_goodchannel(channel_plist, design_p, I, N, LT, runsim, RI, False) Pperdict = lmb.PrOffracaboveFT(Fdict, channel_plist, theta1, runsim) pprint(Fdict) pprint(Pperdict) json.dump(Fdict, f1) json.dump(Pperdict, f1)
N = 1024 design_p = 0.2 runsim = 1000 channel_plist = [0.2, 0.25] C = pl.CapacityBSC(N, design_p) G = int(C) #------------------------------------LT #G=250 LT = float(np.log2(N) / N) LT = 30 print LT Fdict = lmb.perc_goodchannel_WD(LLRdict, channel_plist, N, LT, G, runsim) PT = 44 Ppercdict = lmb.PrOffracaboveFT(Fdict, channel_plist, PT, runsim) print Ppercdict color = ["green", "yellow"] plt.figure(1) index = range(runsim) j = 1 for channel_p in channel_plist: j += 1 plt.scatter(index, Fdict[str(channel_p)], color=color[j - 2], label="Channel_p" + str(channel_p)) plt.legend(loc="best") plt.title("Threshold=" + str(LT) + " design_p=" + str(design_p) + " Rate=" +