def test_run_oriented_raster(): """Test running with a small grid, 2 states, 4 transition types.""" # Create an OrientedRaster with a 3x5 raster grid. Test model has 2 node # states and 4 transition types. grid = RasterModelGrid((3, 5)) nsd = {0: "zero", 1: "one"} trn_list = [] trn_list.append(Transition((0, 1, 0), (1, 0, 0), 1.0)) trn_list.append(Transition((1, 0, 0), (0, 1, 0), 2.0)) trn_list.append(Transition((0, 1, 1), (1, 0, 1), 3.0)) trn_list.append(Transition((0, 1, 1), (1, 1, 1), 4.0)) ins = np.arange(15) % 2 # makes a checkerboard pattern cts = OrientedRasterCTS(grid, nsd, trn_list, ins) # Run to 1st transition, at ~0.12 cts.run(0.15) assert_array_equal(cts.node_state, [0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0]) # Run to 2nd transition, at ~0.19 cts.run(0.2) assert_array_equal(cts.node_state, [0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0]) # Run to 3rd transition, at ~0.265 cts.run(0.27) assert_array_equal(cts.node_state, [0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0]) # Run to 4th transition, at ~0.276 (transition is ignored) cts.run(0.28) assert_array_equal(cts.node_state, [0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0]) # Run to 5th transition, at ~0.461 (ignored) cts.run(0.5) assert_array_equal(cts.node_state, [0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0]) # Run to 6th transition, at ~0.648 cts.run(0.65) assert_array_equal(cts.node_state, [0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0])
def main(): # INITIALIZE # User-defined parameters nr = 10 nc = 10 plot_interval = 0.25 run_duration = 40.0 report_interval = 5.0 # report interval, in real-time seconds # Remember the clock time, and calculate when we next want to report # progress. current_real_time = time.time() next_report = current_real_time + report_interval # Create grid mg = RasterModelGrid(nr, nc, 1.0) mg.set_closed_boundaries_at_grid_edges(True, True, True, True) # Set up the states and pair transitions. # Transition data here represent a body of fractured rock, with rock # represented by nodes with state 0, and saprolite (weathered rock) # represented by nodes with state 1. Node pairs (links) with 0-1 or 1-0 # can undergo a transition to 1-1, representing chemical weathering of the # rock. ns_dict = {0: 'air', 1: 'particle'} xn_list = setup_transition_list() # Create the node-state array and attach it to the grid node_state_grid = mg.add_zeros('node', 'node_state_map', dtype=int) node_state_grid[where(mg.node_y > nr - 3)[0]] = 1 # Create the CA model ca = OrientedRasterCTS(mg, ns_dict, xn_list, node_state_grid) #ca = RasterCTS(mg, ns_dict, xn_list, node_state_grid) # Debug output if needed if _DEBUG: n = ca.grid.number_of_nodes for r in range(ca.grid.number_of_node_rows): for c in range(ca.grid.number_of_node_columns): n -= 1 print('{0:.0f}'.format(ca.node_state[n]), end=' ') print() # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca) # Plot the initial grid ca_plotter.update_plot() # RUN current_time = 0.0 updated = False while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print('Current sim time', current_time, '(', 100 * current_time / run_duration, '%)') next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time + plot_interval, ca.node_state, plot_each_transition=False) #, plotter=ca_plotter) current_time += plot_interval # Add a bunch of particles if current_time > run_duration / 2. and not updated: print('updating...') node_state_grid[where(ca.grid.node_y > (nc / 2.0))[0]] = 1 ca.update_link_states_and_transitions(current_time) updated = True # Plot the current grid ca_plotter.update_plot() # for debugging if _DEBUG: n = ca.grid.number_of_nodes for r in range(ca.grid.number_of_node_rows): for c in range(ca.grid.number_of_node_columns): n -= 1 print('{0:.0f}'.format(ca.node_state[n]), end=' ') print() # FINALIZE # Plot ca_plotter.finalize()
def main(): # INITIALIZE # User-defined parameters nr = 10 nc = 10 plot_interval = 0.25 run_duration = 40.0 report_interval = 5.0 # report interval, in real-time seconds # Remember the clock time, and calculate when we next want to report # progress. current_real_time = time.time() next_report = current_real_time + report_interval # Create grid mg = RasterModelGrid(nr, nc, 1.0) mg.set_closed_boundaries_at_grid_edges(True, True, True, True) # Set up the states and pair transitions. # Transition data here represent a body of fractured rock, with rock # represented by nodes with state 0, and saprolite (weathered rock) # represented by nodes with state 1. Node pairs (links) with 0-1 or 1-0 # can undergo a transition to 1-1, representing chemical weathering of the # rock. ns_dict = { 0 : 'air', 1 : 'particle' } xn_list = setup_transition_list() # Create the node-state array and attach it to the grid node_state_grid = mg.add_zeros('node', 'node_state_map', dtype=int) node_state_grid[where(mg.node_y>nr-3)[0]] = 1 # Create the CA model ca = OrientedRasterCTS(mg, ns_dict, xn_list, node_state_grid) #ca = RasterCTS(mg, ns_dict, xn_list, node_state_grid) # Debug output if needed if _DEBUG: n = ca.grid.number_of_nodes for r in range(ca.grid.number_of_node_rows): for c in range(ca.grid.number_of_node_columns): n -= 1 print('{0:.0f}'.format(ca.node_state[n]), end=' ') print() # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca) # Plot the initial grid ca_plotter.update_plot() # RUN current_time = 0.0 updated = False while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print('Current sim time',current_time,'(',100*current_time/run_duration,'%)') next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time+plot_interval, ca.node_state, plot_each_transition=False) #, plotter=ca_plotter) current_time += plot_interval # Add a bunch of particles if current_time > run_duration/2. and not updated: print('updating...') node_state_grid[where(ca.grid.node_y>(nc/2.0))[0]] = 1 ca.update_link_states_and_transitions(current_time) updated = True # Plot the current grid ca_plotter.update_plot() # for debugging if _DEBUG: n = ca.grid.number_of_nodes for r in range(ca.grid.number_of_node_rows): for c in range(ca.grid.number_of_node_columns): n -= 1 print('{0:.0f}'.format(ca.node_state[n]), end=' ') print() # FINALIZE # Plot ca_plotter.finalize()
def main(): # INITIALIZE # User-defined parameters nr = 100 # number of rows in grid nc = 64 # number of columns in grid plot_interval = 0.5 # time interval for plotting, sec run_duration = 30.0 # duration of run, sec report_interval = 10.0 # report interval, in real-time seconds # Remember the clock time, and calculate when we next want to report # progress. current_real_time = time.time() next_report = current_real_time + report_interval # Create grid mg = RasterModelGrid(nr, nc, 1.0) # Make the boundaries be walls mg.set_closed_boundaries_at_grid_edges(True, True, True, True) # Set up the states and pair transitions. ns_dict = {0: 'fluid', 1: 'particle', 2: 'crystal'} xn_list = setup_transition_list() # Create the node-state array and attach it to the grid node_state_grid = mg.add_zeros('node', 'node_state_map', dtype=int) # Initialize the node-state array: here, the initial condition is a pile of # resting moving particles at the bottom of a container. Seed crystal is bottom_rows = where(mg.node_y < 0.1 * nr)[0] node_state_grid[bottom_rows] = 1 seed_crystal_rows = where(mg.node_y > 0.5 * nr)[0] node_state_grid[seed_crystal_rows] = 2 # For visual display purposes, set all boundary nodes to fluid node_state_grid[mg.closed_boundary_nodes] = 0 # Create the CA model ca = OrientedRasterCTS(mg, ns_dict, xn_list, node_state_grid) # Hex colors grain = '#5F594D' fluid = '#D0E4F2' crystal = '#000000' clist = [fluid, grain, crystal] my_cmap = matplotlib.colors.ListedColormap(clist) # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca, cmap=my_cmap) # Plot the initial grid ca_plotter.update_plot() # RUN current_time = 0.0 while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print 'Current sim time', current_time, '(', 100 * current_time / run_duration, '%)' next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time + plot_interval, ca.node_state, plot_each_transition=False) current_time += plot_interval # Plot the current grid ca_plotter.update_plot() # FINALIZE # Plot ca_plotter.finalize() # Calculate concentration profile c = zeros(nr) for r in range(nr): c[r] = mean(node_state_grid[r * nc:(r + 1) * nc]) figure(2) plot(c, range(nr), 'o') show()
def main(): # INITIALIZE # User-defined parameters nr = 100 # number of rows in grid nc = 64 # number of columns in grid plot_interval = 0.5 # time interval for plotting, sec run_duration = 20.0 # duration of run, sec report_interval = 10.0 # report interval, in real-time seconds # Remember the clock time, and calculate when we next want to report # progress. current_real_time = time.time() next_report = current_real_time + report_interval # Create grid mg = RasterModelGrid(nr, nc, 1.0) # Make the boundaries be walls mg.set_closed_boundaries_at_grid_edges(True, True, True, True) # Set up the states and pair transitions. ns_dict = { 0 : 'fluid', 1 : 'particle' } xn_list = setup_transition_list() # Create the node-state array and attach it to the grid node_state_grid = mg.add_zeros('node', 'node_state_map', dtype=int) # Initialize the node-state array: here, the initial condition is a pile of # resting grains at the bottom of a container. bottom_rows = where(mg.node_y<0.1*nr)[0] node_state_grid[bottom_rows] = 1 # For visual display purposes, set all boundary nodes to fluid node_state_grid[mg.closed_boundary_nodes] = 0 # Create the CA model ca = OrientedRasterCTS(mg, ns_dict, xn_list, node_state_grid) grain = '#5F594D' fluid = '#D0E4F2' clist = [fluid,grain] my_cmap = matplotlib.colors.ListedColormap(clist) # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca, cmap=my_cmap) # Plot the initial grid ca_plotter.update_plot() # RUN current_time = 0.0 while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print 'Current sim time',current_time,'(',100*current_time/run_duration,'%)' next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time+plot_interval, ca.node_state, plot_each_transition=False) current_time += plot_interval # Plot the current grid ca_plotter.update_plot() # FINALIZE # Plot ca_plotter.finalize() # Calculate concentration profile c = zeros(nr) for r in range(nr): c[r] = mean(node_state_grid[r*nc:(r+1)*nc]) figure(2) plot(c, range(nr), 'o') show()
def main(): # INITIALIZE # User-defined parameters nr = 80 nc = 80 plot_interval = 2 run_duration = 200 report_interval = 5.0 # report interval, in real-time seconds # Remember the clock time, and calculate when we next want to report # progress. current_real_time = time.time() next_report = current_real_time + report_interval # Create grid mg = RasterModelGrid(nr, nc, 1.0) # Make the boundaries be walls mg.set_closed_boundaries_at_grid_edges(True, True, True, True) # Set up the states and pair transitions. ns_dict = {0: "fluid", 1: "particle"} xn_list = setup_transition_list() # Create the node-state array and attach it to the grid node_state_grid = mg.add_zeros("node", "node_state_map", dtype=int) # Initialize the node-state array middle_rows = where(bitwise_and(mg.node_y > 0.45 * nr, mg.node_y < 0.55 * nr))[0] node_state_grid[middle_rows] = 1 # Create the CA model ca = OrientedRasterCTS(mg, ns_dict, xn_list, node_state_grid) # Debug output if needed if _DEBUG: n = ca.grid.number_of_nodes for r in range(ca.grid.number_of_node_rows): for c in range(ca.grid.number_of_node_columns): n -= 1 print("{0:.0f}".format(ca.node_state[n]), end=" ") print() # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca) # Plot the initial grid ca_plotter.update_plot() # RUN current_time = 0.0 while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print( "Current sim time", current_time, "(", 100 * current_time / run_duration, "%)", ) next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run( current_time + plot_interval, ca.node_state, plot_each_transition=False ) # , plotter=ca_plotter) current_time += plot_interval # Plot the current grid ca_plotter.update_plot() # for debugging if _DEBUG: n = ca.grid.number_of_nodes for r in range(ca.grid.number_of_node_rows): for c in range(ca.grid.number_of_node_columns): n -= 1 print("{0:.0f}".format(ca.node_state[n]), end=" ") print() # FINALIZE # Plot ca_plotter.finalize()
def test_run_oriented_raster(): """Test running with a small grid, 2 states, 4 transition types.""" # Create an OrientedRaster with a 3x5 raster grid. Test model has 2 node # states and 4 transition types. grid = RasterModelGrid((3, 5)) nsd = {0 : 'zero', 1 : 'one'} trn_list = [] trn_list.append(Transition((0, 1, 0), (1, 0, 0), 1.0)) trn_list.append(Transition((1, 0, 0), (0, 1, 0), 2.0)) trn_list.append(Transition((0, 1, 1), (1, 0, 1), 3.0)) trn_list.append(Transition((0, 1, 1), (1, 1, 1), 4.0)) ins = np.arange(15) % 2 # makes a checkerboard pattern cts = OrientedRasterCTS(grid, nsd, trn_list, ins) # Run to 1st transition, at ~0.12 cts.run(0.15) assert_array_equal(cts.node_state, [0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0]) # Run to 2nd transition, at ~0.19 cts.run(0.2) assert_array_equal(cts.node_state, [0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0]) # Run to 3rd transition, at ~0.265 cts.run(0.27) assert_array_equal(cts.node_state, [0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0]) # Run to 4th transition, at ~0.276 (transition is ignored) cts.run(0.28) assert_array_equal(cts.node_state, [0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0]) # Run to 5th transition, at ~0.461 (ignored) cts.run(0.5) assert_array_equal(cts.node_state, [0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0]) # Run to 6th transition, at ~0.648 cts.run(0.65) assert_array_equal(cts.node_state, [0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0])
# RUN current_time = 0.0 while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() #CMS says: supply new grains at the left side node_state_grid[left_cols] = 1 if current_real_time >= next_report: print 'Current sim time',current_time,'(',100*current_time/run_duration,'%)' next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time+plot_interval, ca.node_state, plot_each_transition=False) current_time += plot_interval # Plot the current grid ca_plotter.update_plot() # FINALIZE # Plot print 'Model complete; close figure for concentration profiles' ca_plotter.finalize() plt.close(1) #plt.savefig('final_grain_config.png') # Calculate concentration profiles c50 = np.zeros(nr)