def test_broadcast(self, input_data, input_var, input_layer): from lasagne.layers.shape import DimshuffleLayer ds = DimshuffleLayer(input_layer, [0, 1, 2, 3, 4, 'x']) assert ds.output_shape == (2, 3, 1, 5, 7, 1) assert ds.get_output_for(input_var).eval({ input_var: input_data }).shape == (2, 3, 1, 5, 7, 1)
def test_rearrange(self, input_data, input_var, input_layer): from lasagne.layers.shape import DimshuffleLayer ds = DimshuffleLayer(input_layer, [4, 3, 2, 1, 0]) assert ds.output_shape == (7, 5, 1, 3, 2) assert ds.get_output_for(input_var).eval({ input_var: input_data }).shape == (7, 5, 1, 3, 2)
def test_collapse_None(self, input_data, input_var, input_layer_with_None): from lasagne.layers.shape import DimshuffleLayer ds_ok = DimshuffleLayer(input_layer_with_None, [0, 1, 3, 4]) assert ds_ok.output_shape == (2, 3, 5, 7) assert ds_ok.get_output_for(input_var).eval( {input_var: input_data}).shape == (2, 3, 5, 7) with pytest.raises(ValueError): DimshuffleLayer(input_layer_with_None, [0, 1, 2, 4])
def test_broadcast(self, input_data, input_var, input_layer): from lasagne.layers.shape import DimshuffleLayer ds = DimshuffleLayer(input_layer, [0, 1, 2, 3, 4, 'x']) assert ds.output_shape == (2, 3, 1, 5, 7, 1) assert ds.get_output_for(input_var).eval( {input_var: input_data}).shape == (2, 3, 1, 5, 7, 1)
def test_rearrange(self, input_data, input_var, input_layer): from lasagne.layers.shape import DimshuffleLayer ds = DimshuffleLayer(input_layer, [4, 3, 2, 1, 0]) assert ds.output_shape == (7, 5, 1, 3, 2) assert ds.get_output_for(input_var).eval( {input_var: input_data}).shape == (7, 5, 1, 3, 2)