def gen_deeper_pipeline_predictor_test(tongue_image_arrays, tongue_yaofangs, tongue_image_shape, nb_yao, trained_gen_model, use_tfidf_tensor=False): ''' @param use_tfidf_tensor: flag of use tfidf tensor or not with different tensorization function ''' ''' load test_x & test_y ''' if use_tfidf_tensor == True: total_x, total_y = tongue2text_gen.data_tensorization_tfidf( tongue_image_arrays, tongue_yaofangs, tongue_image_shape, nb_yao) else: total_x, total_y = tongue2text_gen.data_tensorization( tongue_image_arrays, tongue_yaofangs, tongue_image_shape, nb_yao) # test_x = total_x[: 500] # test_x = total_x[2000 : 2500] # test_x = total_x[4000 : 4500] # test_x = total_x[6000 : 6500] test_x = total_x[len(total_x) - 500:] gen_output = tongue2text_gen.predictor(trained_gen_model, test_x) return gen_output
def gen_biggertimes_cnn_withlda_predictor_test(tongue_image_arrays, tongue_yaofangs, tongue_image_shape, nb_yao, trained_gen_model, lda_model_path, use_tfidf_tensor=False): ''' @param use_tfidf_tensor: flag of use tfidf tensor or not with different tensorization function @return: gen_output_list: [gen_output, aux_output] ''' # in test process, lda_model and dictionary can be only load from disk(can # not be replaced) lda_model, dictionary = lda.loadModelfromFile( lda_model_path, readOnly=True) total_tongue_x, total_y, total_aux_y = tongue2text_gen.data_tensorization_lda( tongue_image_arrays, tongue_yaofangs, tongue_image_shape, nb_yao, lda_model.num_topics, lda_model, dictionary, use_tfidf_tensor=use_tfidf_tensor) # test_tongue_x = total_tongue_x[: 500] # test_tongue_x = total_tongue_x[2000 : 2500] # test_tongue_x = total_tongue_x[4000 : 4500] # test_tongue_x = total_tongue_x[6000 : 6500] test_tongue_x = total_tongue_x[len(total_tongue_x) - 500:] gen_output_list = tongue2text_gen.predictor( trained_gen_model, test_tongue_x) # gen_output in here is a tuple as (main_output, aux_output), get the # first one return gen_output_list