def train_binary_classifier(N: int,
                            D: int,
                            M: int,
                            X: np.ndarray,
                            T: np.ndarray,
                            W: np.ndarray,
                            log_loss_function: Callable,
                            optimizer: Optimizer,
                            num_epochs: int = 100,
                            test_numerical_gradient: bool = False,
                            log_level: int = logging.ERROR,
                            callback: Callable = None):
    """Test case for binary classification with matmul + log loss.
    Args:
        N: Batch size
        D: Number of features
        M: Number of nodes. 1 for sigmoid and 2 for softmax
        X: train data
        T: labels
        W: weight
        log_loss_function: cross entropy logg loss function
        optimizer: Optimizer
        num_epochs: Number of epochs to run
        test_numerical_gradient: Flag if test the analytical gradient with the numerical one.
        log_level: logging level
        callback: callback function to invoke at the each epoch end.
    """
    name = __name__
    assert isinstance(T, np.ndarray) and np.issubdtype(
        T.dtype, np.integer) and T.ndim == 1 and T.shape[0] == N
    assert isinstance(
        X, np.ndarray) and X.dtype == TYPE_FLOAT and X.ndim == 2 and X.shape[
            0] == N and X.shape[1] == D
    assert isinstance(
        W, np.ndarray) and W.dtype == TYPE_FLOAT and W.ndim == 2 and W.shape[
            0] == M and W.shape[1] == D + 1
    assert num_epochs > 0 and N > 0 and D > 0

    assert ((log_loss_function == sigmoid_cross_entropy_log_loss and M == 1) or
            (log_loss_function == softmax_cross_entropy_log_loss and M >= 2))

    # --------------------------------------------------------------------------------
    # Instantiate a CrossEntropyLogLoss layer
    # --------------------------------------------------------------------------------
    loss = CrossEntropyLogLoss(name="loss",
                               num_nodes=M,
                               log_loss_function=log_loss_function,
                               log_level=log_level)

    # --------------------------------------------------------------------------------
    # Instantiate a Matmul layer
    # --------------------------------------------------------------------------------
    matmul = Matmul(name="matmul",
                    num_nodes=M,
                    W=W,
                    optimizer=optimizer,
                    log_level=log_level)
    matmul.objective = loss.function

    num_no_progress: int = 0  # how many time when loss L not decreased.
    loss.T = T
    history: List[np.ndarray] = [loss.function(matmul.function(X))]

    for i in range(num_epochs):
        # --------------------------------------------------------------------------------
        # Layer forward path
        # Calculate the matmul output Y=f(X), and get the loss L = objective(Y)
        # Test the numerical gradient dL/dX=matmul.gradient_numerical().
        # --------------------------------------------------------------------------------
        Y = matmul.function(X)
        L = loss.function(Y)

        if not (i % 50): print(f"iteration {i} Loss {L}")
        Logger.info("%s: iteration[%s]. Loss is [%s]", name, i, L)

        # --------------------------------------------------------------------------------
        # Constraint: 1. Objective/Loss L(Yn+1) after gradient descent < L(Yn)
        # --------------------------------------------------------------------------------
        if L >= history[-1] and (i % 20) == 1:
            Logger.warning(
                "Iteration [%i]: Loss[%s] has not improved from the previous [%s].",
                i, L, history[-1])
            if (num_no_progress := num_no_progress + 1) > 20:
                Logger.error(
                    "The training has no progress more than %s times.",
                    num_no_progress)
                # break
        else:
            num_no_progress = 0

        history.append(L)

        # --------------------------------------------------------------------------------
        # Expected dL/dW.T = X.T @ dL/dY = X.T @ (P-T) / N, and dL/dX = dL/dY @ W
        # P = sigmoid(X) or softmax(X)
        # dL/dX = dL/dY * W is to use W BEFORE updating W.
        # --------------------------------------------------------------------------------
        P = None
        if log_loss_function == sigmoid_cross_entropy_log_loss:
            # P = sigmoid(np.matmul(X, W.T))
            P = sigmoid(np.matmul(matmul.X, matmul.W.T))
            P = P - T.reshape(-1, 1)  # T(N,) -> T(N,1) to align with P(N,1)
            assert P.shape == (
                N, 1), "P.shape is %s T.shape is %s" % (P.shape, T.shape)

        elif log_loss_function == softmax_cross_entropy_log_loss:
            # matmul.X.shape is (N, D+1), matmul.W.T.shape is (D+1, M)
            P = softmax(np.matmul(matmul.X, matmul.W.T))  # (N, M)
            P[np.arange(N), T] -= 1

        EDX = np.matmul(P / N, matmul.W)  # (N,M) @ (M, D+1) -> (N, D+1)
        EDX = EDX[::, 1:]  # Hide the bias    -> (N, D)
        EDW = np.matmul(matmul.X.T,
                        P / N).T  # ((D+1,N) @ (N, M)).T -> (M, D+1)

        # --------------------------------------------------------------------------------
        # Layer backward path
        # 1. Calculate the analytical gradient dL/dX=matmul.gradient(dL/dY) with a dL/dY.
        # 2. Gradient descent to update Wn+1 = Wn - lr * dL/dX.
        # --------------------------------------------------------------------------------
        before = copy.deepcopy(matmul.W)
        dY = loss.gradient(TYPE_FLOAT(1))
        dX = matmul.gradient(dY)

        # gradient descent and get the analytical gradients dS=[dL/dX, dL/dW]
        # dL/dX.shape = (N, D)
        # dL/dW.shape = (M, D+1)
        dS = matmul.update()
        dW = dS[0]
        # --------------------------------------------------------------------------------
        #  Constraint 1. W in the matmul has been updated by the gradient descent.
        # --------------------------------------------------------------------------------
        Logger.debug("W after is \n%s", matmul.W)
        assert not np.array_equal(before, matmul.W), "W has not been updated."

        if not validate_against_expected_gradient(EDX, dX):
            Logger.warning("Expected dL/dX \n%s\nDiff\n%s", EDX, EDX - dX)
        if not validate_against_expected_gradient(EDW, dW):
            Logger.warning("Expected dL/dW \n%s\nDiff\n%s", EDW, EDW - dW)

        if test_numerical_gradient:
            # --------------------------------------------------------------------------------
            # Numerical gradients gn=[dL/dX, dL/dW]
            # dL/dX.shape = (N, D)
            # dL/dW.shape = (M, D+1)
            # --------------------------------------------------------------------------------
            gn = matmul.gradient_numerical()
            validate_against_numerical_gradient([dX] + dS, gn, Logger)

        if callback:
            # if W.shape[1] == 1 else callback(W=np.average(matmul.W, axis=0))
            callback(W=matmul.W[0])
예제 #2
0
def disabled_test_020_matmul_round_trip():
    """
    TODO: Disabled as need to re-design numerical_jacobian for 32 bit float e.g TF.

    Objective:
        Verify the forward and backward paths at matmul.

    Expected:
        Forward path:
        1. Matmul function(X) == X @ W.T
        2. Numerical gradient should be the same with numerical Jacobian

        Backward path:
        3. Analytical gradient dL/dX == dY @ W
        4. Analytical dL/dW == X.T @ dY
        5. Analytical gradients are similar to the numerical gradient ones

        Gradient descent
        6. W is updated via the gradient descent.
        7. Objective L is decreasing via the gradient descent.

    """
    profiler = cProfile.Profile()
    profiler.enable()

    for _ in range(NUM_MAX_TEST_TIMES):
        # --------------------------------------------------------------------------------
        # Instantiate a Matmul layer
        # --------------------------------------------------------------------------------
        N: int = np.random.randint(1, NUM_MAX_BATCH_SIZE)
        M: int = np.random.randint(1, NUM_MAX_NODES)
        D: int = np.random.randint(1, NUM_MAX_FEATURES)
        W = weights.he(M, D + 1)
        name = "test_020_matmul_methods"

        def objective(X: np.ndarray) -> Union[float, np.ndarray]:
            """Dummy objective function to calculate the loss L"""
            return np.sum(X)

        # Test both static instantiation and build()
        if TYPE_FLOAT(np.random.uniform()) < 0.5:
            matmul = Matmul(name=name,
                            num_nodes=M,
                            W=W,
                            log_level=logging.DEBUG)
        else:
            matmul_spec = {
                _NAME: "test_020_matmul_builder_to_fail_matmul_spec",
                _NUM_NODES: M,
                _NUM_FEATURES: D,
                _WEIGHTS: {
                    _SCHEME: "he",
                },
                _OPTIMIZER: {
                    _SCHEME: "sGd"
                }
            }
            matmul = Matmul.build(matmul_spec)

        matmul.objective = objective

        # ================================================================================
        # Layer forward path
        # Calculate the layer output Y=f(X), and get the loss L = objective(Y)
        # Test the numerical gradient dL/dX=matmul.gradient_numerical().
        #
        # Note that bias columns are added inside the matmul layer instance, hence
        # matmul.X.shape is (N, 1+D), matmul.W.shape is (M, 1+D)
        # ================================================================================
        X = np.random.randn(N, D).astype(TYPE_FLOAT)
        Logger.debug("%s: X is \n%s", name, X)

        # pylint: disable=not-callable
        Y = matmul.function(X)
        # pylint: disable=not-callable
        L = matmul.objective(Y)

        # Constraint 1 : Matmul outputs Y should be [email protected]
        assert np.array_equal(Y, np.matmul(matmul.X, matmul.W.T))

        # Constraint 2: Numerical gradient should be the same with numerical Jacobian
        GN = matmul.gradient_numerical()  # [dL/dX, dL/dW]

        # DO NOT use matmul.function() as the objective function for numerical_jacobian().
        # The state of the layer will be modified.
        # LX = lambda x: matmul.objective(matmul.function(x))
        def LX(x):
            y = np.matmul(x, matmul.W.T)
            # pylint: disable=not-callable
            return matmul.objective(y)

        EGNX = numerical_jacobian(LX,
                                  matmul.X)  # Numerical dL/dX including bias
        EGNX = EGNX[::, 1::]  # Remove bias for dL/dX
        assert np.array_equal(GN[0], EGNX), \
            "GN[0]\n%s\nEGNX=\n%s\n" % (GN[0], EGNX)

        # DO NOT use matmul.function() as the objective function for numerical_jacobian().
        # The state of the layer will be modified.
        # LW = lambda w: matmul.objective(np.matmul(X, w.T))
        def LW(w):
            Y = np.matmul(matmul.X, w.T)
            # pylint: disable=not-callable
            return matmul.objective(Y)

        EGNW = numerical_jacobian(LW,
                                  matmul.W)  # Numerical dL/dW including bias
        assert np.array_equal(GN[1], EGNW)  # No need to remove bias

        # ================================================================================
        # Layer backward path
        # Calculate the analytical gradient dL/dX=matmul.gradient(dL/dY) with a dummy dL/dY.
        # ================================================================================
        dY = np.ones_like(Y)
        dX = matmul.gradient(dY)

        # Constraint 3: Matmul gradient dL/dX should be dL/dY @ W. Use a dummy dL/dY = 1.0.
        expected_dX = np.matmul(dY, matmul.W)
        expected_dX = expected_dX[::, 1::  # Omit bias
                                  ]
        assert np.array_equal(dX, expected_dX)

        # Constraint 5: Analytical gradient dL/dX close to the numerical gradient GN.
        assert np.all(np.abs(dX - GN[0]) < GRADIENT_DIFF_ACCEPTANCE_VALUE), \
            "dX need close to GN[0]. dX:\n%s\ndiff \n%s\n" % (dX, dX-GN[0])

        # --------------------------------------------------------------------------------
        # Gradient update.
        # Run the gradient descent to update Wn+1 = Wn - lr * dL/dX.
        # --------------------------------------------------------------------------------
        # Python passes the reference to W, hence it is directly updated by the gradient-
        # descent to avoid a temporary copy. Backup W before to compare before/after.
        backup = copy.deepcopy(W)

        # Gradient descent and returns analytical dL/dX, dL/dW
        dS = matmul.update()
        dW = dS[0]

        # Constraint 6.: W has been updated by the gradient descent.
        assert np.any(backup != matmul.W), "W has not been updated "

        # Constraint 5: the numerical gradient (dL/dX, dL/dW) are closer to the analytical ones.
        assert validate_against_expected_gradient(GN[0], dX), \
            "dX=\n%s\nGN[0]=\n%sdiff=\n%s\n" % (dX, GN[0], (dX-GN[0]))
        assert validate_against_expected_gradient(GN[1], dW), \
            "dW=\n%s\nGN[1]=\n%sdiff=\n%s\n" % (dW, GN[1], (dW-GN[1]))

        # Constraint 7: gradient descent progressing with the new objective L(Yn+1) < L(Yn)
        # pylint: disable=not-callable
        assert np.all(np.abs(objective(matmul.function(X)) < L))

    profiler.disable()
    profiler.print_stats(sort="cumtime")
예제 #3
0
def validate_relu_neuron_training(matmul: Matmul,
                                  activation: ReLU,
                                  loss: CrossEntropyLogLoss,
                                  X: np.ndarray,
                                  T: np.ndarray,
                                  num_epochs: int = 100,
                                  test_numerical_gradient: bool = False,
                                  callback: Callable = None):
    activation.objective = loss.function
    matmul.objective = compose(activation.function, loss.function)
    objective = compose(matmul.function, matmul.objective)

    num_no_progress: int = 0  # how many time when loss L not decreased.
    history: List[np.ndarray] = []

    loss.T = T
    for i in range(num_epochs):
        L = objective(X)
        N = X.shape[0]
        P = softmax(relu(np.matmul(matmul.X, matmul.W.T)))
        EDA = expected_gradient_from_log_loss(P=P, T=T, N=N)

        # ********************************************************************************
        # Constraint: Expected gradients must match actual
        # ********************************************************************************
        validate_relu_neuron_round_trip(matmul=matmul,
                                        activation=activation,
                                        X=X,
                                        dA=EDA)

        # --------------------------------------------------------------------------------
        # gradient descent and get the analytical dL/dX, dL/dW
        # --------------------------------------------------------------------------------
        previous_W = copy.deepcopy(matmul.W)
        matmul.update()  # dL/dX, dL/dW

        # ********************************************************************************
        #  Constraint. W in the matmul has been updated by the gradient descent.
        # ********************************************************************************
        Logger.debug("W after is \n%s", matmul.W)
        if np.array_equal(previous_W, matmul.W):
            Logger.warning("W has not been updated")

        # ********************************************************************************
        # Constraint: Objective/Loss L(Yn+1) after gradient descent < L(Yn)
        # ********************************************************************************
        if i > 0 and L >= history[-1]:
            Logger.warning(
                "Iteration [%i]: Loss[%s] has not improved from the previous [%s] for %s times.",
                i, L, history[-1], num_no_progress + 1)
            # --------------------------------------------------------------------------------
            # Reduce the learning rate can make the situation worse.
            # When reduced the lr every time L >= history, the (L >= history) became successive
            # and eventually exceeded 50 successive non-improvement ending in failure.
            # Keep the learning rate make the L>=history more frequent but still up to 3
            # successive events, and the training still kept progressing.
            # --------------------------------------------------------------------------------
            num_no_progress += 1
            if num_no_progress > 5:
                matmul.lr = matmul.lr * 0.95

            if num_no_progress > 50:
                Logger.error(
                    "The training has no progress more than %s times.",
                    num_no_progress)
                break
        else:
            num_no_progress = 0

        history.append(L)

        if callback:
            callback(W=matmul.W)

    return history