예제 #1
0
    def __init__(self,
                 numpy_rng,
                 theano_rng=None,
                 cfg_si=None,
                 cfg_adapt=None):

        # allocate symbolic variables for the data
        self.x = T.matrix('x')
        self.y = T.ivector('y')

        # we assume that i-vectors are appended to speech features in a frame-wise manner
        self.feat_dim = cfg_si.n_ins
        self.ivec_dim = cfg_adapt.n_ins
        self.iv = self.x[:, self.feat_dim:self.feat_dim + self.ivec_dim]
        self.feat = self.x[:, 0:self.feat_dim]

        # the parameters
        self.params = []  # the params to be updated in the current training
        self.delta_params = []

        # the i-vector network
        dnn_adapt = DNN(numpy_rng=numpy_rng,
                        theano_rng=theano_rng,
                        cfg=cfg_adapt,
                        input=self.iv)
        self.dnn_adapt = dnn_adapt

        # the final output layer which has the same dimension as the input features
        linear_func = lambda x: x
        adapt_output_layer = HiddenLayer(
            rng=numpy_rng,
            input=dnn_adapt.layers[-1].output,
            n_in=cfg_adapt.hidden_layers_sizes[-1],
            n_out=self.feat_dim,
            activation=linear_func)
        dnn_adapt.layers.append(adapt_output_layer)
        dnn_adapt.params.extend(adapt_output_layer.params)
        dnn_adapt.delta_params.extend(adapt_output_layer.delta_params)

        dnn_si = DNN(numpy_rng=numpy_rng,
                     theano_rng=theano_rng,
                     cfg=cfg_si,
                     input=self.feat + dnn_adapt.layers[-1].output)
        self.dnn_si = dnn_si

        # construct a function that implements one step of finetunining
        # compute the cost for second phase of training,
        # defined as the negative log likelihood
        self.finetune_cost = dnn_si.logLayer.negative_log_likelihood(self.y)
        self.errors = dnn_si.logLayer.errors(self.y)
예제 #2
0
파일: dnn.py 프로젝트: synetkim/multi_asr
    def __init__(
            self,
            numpy_rng,
            theano_rng=None,
            cfg=None,  # the network configuration
            dnn_shared=None,
            shared_layers=[],
            input=None):

        self.layers = []
        self.params = []
        self.delta_params = []

        self.cfg = cfg
        self.n_ins = cfg.n_ins
        self.n_outs = cfg.n_outs
        self.hidden_layers_sizes = cfg.hidden_layers_sizes
        self.hidden_layers_number = len(self.hidden_layers_sizes)
        self.activation = cfg.activation

        self.do_maxout = cfg.do_maxout
        self.pool_size = cfg.pool_size

        self.max_col_norm = cfg.max_col_norm
        self.l1_reg = cfg.l1_reg
        self.l2_reg = cfg.l2_reg

        self.non_updated_layers = cfg.non_updated_layers

        if not theano_rng:
            theano_rng = RandomStreams(numpy_rng.randint(2**30))
        # allocate symbolic variables for the data
        if input == None:
            self.x = T.matrix('x')
        else:
            self.x = input
        self.y = T.ivector('y')

        for i in xrange(self.hidden_layers_number):
            # construct the hidden layer
            if i == 0:
                input_size = self.n_ins
                layer_input = self.x
            else:
                input_size = self.hidden_layers_sizes[i - 1]
                layer_input = self.layers[-1].output

            W = None
            b = None
            if (i in shared_layers):
                W = dnn_shared.layers[i].W
                b = dnn_shared.layers[i].b
            if self.do_maxout == True:
                hidden_layer = HiddenLayer(rng=numpy_rng,
                                           input=layer_input,
                                           n_in=input_size,
                                           n_out=self.hidden_layers_sizes[i] *
                                           self.pool_size,
                                           W=W,
                                           b=b,
                                           activation=(lambda x: 1.0 * x),
                                           do_maxout=True,
                                           pool_size=self.pool_size)
            else:
                hidden_layer = HiddenLayer(rng=numpy_rng,
                                           input=layer_input,
                                           n_in=input_size,
                                           n_out=self.hidden_layers_sizes[i],
                                           W=W,
                                           b=b,
                                           activation=self.activation)
            # add the layer to our list of layers
            self.layers.append(hidden_layer)
            # if the layer index is included in self.non_updated_layers, parameters of this layer will not be updated
            if (i not in self.non_updated_layers):
                self.params.extend(hidden_layer.params)
                self.delta_params.extend(hidden_layer.delta_params)
        # We now need to add a logistic layer on top of the MLP
        self.logLayer = LogisticRegression(input=self.layers[-1].output,
                                           n_in=self.hidden_layers_sizes[-1],
                                           n_out=self.n_outs)

        if self.n_outs > 0:
            self.layers.append(self.logLayer)
            self.params.extend(self.logLayer.params)
            self.delta_params.extend(self.logLayer.delta_params)

        # compute the cost for second phase of training,
        # defined as the negative log likelihood
        self.finetune_cost = self.logLayer.negative_log_likelihood(self.y)
        self.errors = self.logLayer.errors(self.y)

        if self.l1_reg is not None:
            for i in xrange(self.hidden_layers_number):
                W = self.layers[i].W
                self.finetune_cost += self.l1_reg * (abs(W).sum())

        if self.l2_reg is not None:
            for i in xrange(self.hidden_layers_number):
                W = self.layers[i].W
                self.finetune_cost += self.l2_reg * T.sqr(W).sum()
예제 #3
0
파일: cnn_sat.py 프로젝트: xczhanjun/pdnn
    def __init__(self,
                 numpy_rng,
                 theano_rng=None,
                 batch_size=256,
                 n_outs=500,
                 conv_layer_configs=[],
                 hidden_layers_sizes=[500, 500],
                 ivec_layers_sizes=[500, 500],
                 conv_activation=T.nnet.sigmoid,
                 full_activation=T.nnet.sigmoid,
                 use_fast=False,
                 update_part=[0, 1],
                 ivec_dim=100):

        self.conv_layers = []
        self.full_layers = []
        self.ivec_layers = []

        self.params = []
        self.delta_params = []

        if not theano_rng:
            theano_rng = RandomStreams(numpy_rng.randint(2**30))
        # allocate symbolic variables for the data
        self.x = T.matrix('x')
        self.y = T.ivector('y')

        input_shape = conv_layer_configs[0]['input_shape']
        n_ins = input_shape[-1] * input_shape[-2] * input_shape[-3]

        self.iv = self.x[:, n_ins:n_ins + ivec_dim]
        self.raw = self.x[:, 0:n_ins]

        self.conv_layer_num = len(conv_layer_configs)
        self.full_layer_num = len(hidden_layers_sizes)
        self.ivec_layer_num = len(ivec_layers_sizes)

        # construct the adaptation NN
        for i in xrange(self.ivec_layer_num):
            if i == 0:
                input_size = ivec_dim
                layer_input = self.iv
            else:
                input_size = ivec_layers_sizes[i - 1]
                layer_input = self.ivec_layers[-1].output

            sigmoid_layer = HiddenLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=ivec_layers_sizes[i],
                                        activation=T.nnet.sigmoid)
            # add the layer to our list of layers
            self.ivec_layers.append(sigmoid_layer)
            if 0 in update_part:
                self.params.extend(sigmoid_layer.params)
                self.delta_params.extend(sigmoid_layer.delta_params)

        linear_func = lambda x: x
        sigmoid_layer = HiddenLayer(rng=numpy_rng,
                                    input=self.ivec_layers[-1].output,
                                    n_in=ivec_layers_sizes[-1],
                                    n_out=n_ins,
                                    activation=linear_func)
        self.ivec_layers.append(sigmoid_layer)
        if 0 in update_part:
            self.params.extend(sigmoid_layer.params)
            self.delta_params.extend(sigmoid_layer.delta_params)

        for i in xrange(self.conv_layer_num):
            if i == 0:
                input = self.raw + self.ivec_layers[-1].output
            else:
                input = self.conv_layers[-1].output
            config = conv_layer_configs[i]
            conv_layer = ConvLayer(numpy_rng=numpy_rng,
                                   input=input,
                                   input_shape=config['input_shape'],
                                   filter_shape=config['filter_shape'],
                                   poolsize=config['poolsize'],
                                   activation=conv_activation,
                                   flatten=config['flatten'],
                                   use_fast=use_fast)
            self.conv_layers.append(conv_layer)
            if 1 in update_part:
                self.params.extend(conv_layer.params)
                self.delta_params.extend(conv_layer.delta_params)

        self.conv_output_dim = config['output_shape'][1] * config[
            'output_shape'][2] * config['output_shape'][3]

        for i in xrange(self.full_layer_num):
            # construct the sigmoidal layer
            if i == 0:
                input_size = self.conv_output_dim
                layer_input = self.conv_layers[-1].output
            else:
                input_size = hidden_layers_sizes[i - 1]
                layer_input = self.full_layers[-1].output

            sigmoid_layer = HiddenLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layers_sizes[i],
                                        activation=full_activation)
            # add the layer to our list of layers
            self.full_layers.append(sigmoid_layer)
            if 1 in update_part:
                self.params.extend(sigmoid_layer.params)
                self.delta_params.extend(sigmoid_layer.delta_params)
# We now need to add a logistic layer on top of the MLP
        self.logLayer = LogisticRegression(input=self.full_layers[-1].output,
                                           n_in=hidden_layers_sizes[-1],
                                           n_out=n_outs)
        self.full_layers.append(self.logLayer)
        if 1 in update_part:
            self.params.extend(self.logLayer.params)
            self.delta_params.extend(self.logLayer.delta_params)

        self.finetune_cost = self.logLayer.negative_log_likelihood(self.y)

        self.errors = self.logLayer.errors(self.y)
예제 #4
0
    def __init__(
            self,
            numpy_rng,
            theano_rng=None,
            cfg=None,  # the network configuration
            dnn_shared=None,
            shared_layers=[],
            input=None):

        self.cfg = cfg
        self.params = []
        self.delta_params = []
        self.n_ins = cfg.n_ins
        self.n_outs = cfg.n_outs
        self.l1_reg = cfg.l1_reg
        self.l2_reg = cfg.l2_reg
        self.do_maxout = cfg.do_maxout
        self.pool_size = cfg.pool_size
        self.max_col_norm = cfg.max_col_norm

        self.layers = []
        self.lstm_layers = []
        self.fc_layers = []

        # 1. lstm
        self.lstm_layers_sizes = cfg.lstm_layers_sizes
        self.lstm_layers_number = len(self.lstm_layers_sizes)
        # 2. dnn
        self.hidden_layers_sizes = cfg.hidden_layers_sizes
        self.hidden_layers_number = len(self.hidden_layers_sizes)
        self.activation = cfg.activation

        if not theano_rng:
            theano_rng = RandomStreams(numpy_rng.randint(2**30))
        if input == None:
            self.x = T.matrix('x')
        else:
            self.x = input
        self.y = T.matrix('y')

        #######################
        # build lstm layers   #
        #######################
        print '1. start to build attend-lstm layer: ' + str(
            self.lstm_layers_number) + ', n_attendout: ' + str(cfg.batch_size)
        for i in xrange(self.lstm_layers_number):
            if i == 0:
                input_size = self.n_ins
                input = self.x
            else:
                input_size = self.lstm_layers_sizes[i - 1]
                input = self.layers[-1].output
            lstm_layer = AttendRnnLayer(rng=numpy_rng,
                                        input=input,
                                        n_in=input_size,
                                        n_out=self.lstm_layers_sizes[i],
                                        n_attendout=cfg.batch_size)
            print '\tbuild attend-lstm layer: ' + str(
                input_size) + ' x ' + str(lstm_layer.n_out)
            self.layers.append(lstm_layer)
            self.lstm_layers.append(lstm_layer)
            self.params.extend(lstm_layer.params)
            self.delta_params.extend(lstm_layer.delta_params)
        print '1. finish attend-lstm layer: ' + str(self.layers[-1].n_out)

        #######################
        # build dnnv layers   #
        #######################
        print '2. start to build dnnv layer: ' + str(self.hidden_layers_number)
        for i in xrange(self.hidden_layers_number):
            if i == 0:
                input_size = self.layers[-1].n_out
            else:
                input_size = self.hidden_layers_sizes[i - 1]
            input = self.layers[-1].output
            fc_layer = HiddenLayer(rng=numpy_rng,
                                   input=input,
                                   n_in=input_size,
                                   n_out=self.hidden_layers_sizes[i])
            print '\tbuild dnnv layer: ' + str(input_size) + ' x ' + str(
                fc_layer.n_out)
            self.layers.append(fc_layer)
            self.fc_layers.append(fc_layer)
            self.params.extend(fc_layer.params)
            self.delta_params.extend(fc_layer.delta_params)
        print '2. finish dnnv layer: ' + str(self.layers[-1].n_out)

        #######################
        # build log layers   #
        #######################
        print '3. start to build log layer: 1'
        input_size = self.layers[-1].n_out
        input = self.layers[-1].output
        logLayer = OutputLayer(input=input, n_in=input_size, n_out=self.n_outs)
        print '\tbuild final layer: ' + str(input_size) + ' x ' + str(
            fc_layer.n_out)
        self.layers.append(logLayer)
        self.params.extend(logLayer.params)
        self.delta_params.extend(logLayer.delta_params)
        print '3. finish log layer: ' + str(self.layers[-1].n_out)
        print 'Total layers: ' + str(len(self.layers))

        sys.stdout.flush()

        self.finetune_cost = self.layers[-1].l2(self.y)
        self.errors = self.layers[-1].errors(self.y)

        if self.l2_reg is not None:
            for i in xrange(self.hidden_layers_number):
                W = self.layers[i].W
                self.finetune_cost += self.l2_reg * T.sqr(W).sum()
예제 #5
0
    def __init__(self, numpy_rng, theano_rng=None,
                 cfg = None,  # the network configuration
                 dnn_shared = None, shared_layers=[], input = None, extra_input = None):

        self.cfg = cfg
        self.params = []
        self.delta_params   = []
        self.n_ins = cfg.n_ins; self.n_outs = cfg.n_outs
        self.l1_reg = cfg.l1_reg
        self.l2_reg = cfg.l2_reg
        self.do_maxout = cfg.do_maxout; self.pool_size = cfg.pool_size
        self.max_col_norm = cfg.max_col_norm
        print self.max_col_norm

        self.layers = []
        self.extra_layers = []
        self.lstm_layers = []
        self.fc_layers = []

        # 1. lstm
        self.lstm_layers_sizes = cfg.lstm_layers_sizes
        self.lstm_layers_number = len(self.lstm_layers_sizes)
       
        # 1.5 attention
        self.extra_dim = cfg.extra_dim
        print 'Extra dim: '+str(cfg.extra_dim)
        self.extra_layers_sizes = cfg.extra_layers_sizes

        # 2. dnn
        self.hidden_layers_sizes = cfg.hidden_layers_sizes
        self.hidden_layers_number = len(self.hidden_layers_sizes)
        self.activation = cfg.activation


        if not theano_rng:
            theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))
        if input == None:
            self.x = T.matrix('x')
            self.extra_x = T.matrix('extra_x')
        else:
            self.x = input 
            self.extra_x = extra_input 
        self.y = T.matrix('y')

        #######################################
        # build phase-based attention layer   #
        #######################################
        # 0. phase-based attention
        #self.extra_layers_sizes.extend([self.conv_output_dim])
        #print '0. start to build attend layer: '+ str(self.extra_layers_sizes)
        #for i in xrange(len(self.extra_layers_sizes)):
        #    if i == 0:
        #        input_size = 6400*5
        #        input_size = cfg.extra_dim
        #        layer_input = self.extra_x
        #    else:
        #        input_size = self.extra_layers_sizes[i - 1]
        #        layer_input = self.extra_layers[-1].output
#
#            W = None; b = None
#            attend_layer = HiddenLayer(rng=numpy_rng,
#                                        input=layer_input,
#                                        n_in=input_size,
#                                        n_out=self.extra_layers_sizes[i],
#                                        W = W, b = b,
#                                        activation=self.activation)
#            print '\tbuild attend layer: ' + str(input_size) +' x '+ str(attend_layer.n_out)
#            self.extra_layers.append(attend_layer)
#            self.params.extend(attend_layer.params)
#            self.delta_params.extend(attend_layer.delta_params)
#        self.extra_layers[-1].att_e_tl = self.extra_layers[-1].output
#        self.extra_layers[-1].att_a_tl = T.nnet.softmax(self.extra_layers[-1].att_e_tl)
#        #self.extra_layers[-1].att_a_tl = T.exp(self.extra_layers[-1].att_e_tl)/(T.exp(self.extra_layers[-1].att_e_tl)).sum(0,keepdims=True)
#        print '0. finish attend layer: '+ str(self.extra_layers[-1].n_out)

        #######################
        # build lstm layers   #
        #######################
        #print '1. start to build PhaseAttendLSTMLayer : '+ str(self.lstm_layers_number) + ', n_attendout: '+ str(cfg.batch_size)
        print '1. start to build PhaseAttendLSTMLayer : '+ str(self.lstm_layers_number) + ', n_attendout: '+ str(self.n_ins)
        for i in xrange(self.lstm_layers_number):
            if i == 0:
                input_size = self.n_ins
                input = self.x
            else:
                input_size = self.lstm_layers_sizes[i - 1]
                input = self.layers[-1].output
            lstm_layer = PhaseAttendLSTMLayer(rng=numpy_rng, input=input, n_in=input_size, 
											extra_input = extra_input, 
											n_out=self.lstm_layers_sizes[i])
            print '\tbuild PhaseAttendLSTMLayer: ' + str(input_size) +' x '+ str(lstm_layer.n_out)
            self.layers.append(lstm_layer)
            self.lstm_layers.append(lstm_layer)
            self.params.extend(lstm_layer.params)
            self.delta_params.extend(lstm_layer.delta_params)
        print '1. finish PhaseAttendLSTMLayer: '+ str(self.layers[-1].n_out)

        #######################
        # build dnnv layers   #
        #######################
        print '2. start to build dnnv layer: '+ str(self.hidden_layers_number)
        for i in xrange(self.hidden_layers_number):
            if i == 0:
                input_size = self.layers[-1].n_out
            else:
                input_size = self.hidden_layers_sizes[i - 1]
            input = self.layers[-1].output
            fc_layer = HiddenLayer(rng=numpy_rng, input=input, n_in=input_size, n_out=self.hidden_layers_sizes[i], activation=self.activation)
            print '\tbuild dnnv layer: ' + str(input_size) +' x '+ str(fc_layer.n_out)
            self.layers.append(fc_layer)
            self.fc_layers.append(fc_layer)
            self.params.extend(fc_layer.params)
            self.delta_params.extend(fc_layer.delta_params)
        print '2. finish dnnv layer: '+ str(self.layers[-1].n_out)

        #######################
        # build log layers   #
        #######################
        print '3. start to build log layer: 1'
        input_size = self.layers[-1].n_out
        input = self.layers[-1].output
        logLayer = OutputLayer(input=input, n_in=input_size, n_out=self.n_outs)
        print '\tbuild final layer: ' + str(input_size) +' x '+ str(fc_layer.n_out)
        self.layers.append(logLayer)
        self.params.extend(logLayer.params)
        self.delta_params.extend(logLayer.delta_params)
        print '3. finish log layer: '+ str(self.layers[-1].n_out)
        print 'Total layers: '+ str(len(self.layers))

        sys.stdout.flush()

        self.finetune_cost = self.layers[-1].l2(self.y)
        self.errors = self.layers[-1].errors(self.y)

        if self.l2_reg is not None:
            #for i in xrange(self.lstm_layers_number):
            #    W = self.lstm_layers[i].W_xi
            #    self.finetune_cost += self.l2_reg * T.sqr(W).sum()
            #    W = self.lstm_layers[i].W_hi
            #    self.finetune_cost += self.l2_reg * T.sqr(W).sum()
            #    W = self.lstm_layers[i].W_xf
            #    self.finetune_cost += self.l2_reg * T.sqr(W).sum()
            #    W = self.lstm_layers[i].W_hf
            #    self.finetune_cost += self.l2_reg * T.sqr(W).sum()
            #    W = self.lstm_layers[i].W_xc
            #    self.finetune_cost += self.l2_reg * T.sqr(W).sum()
            #    W = self.lstm_layers[i].W_hc
            #    self.finetune_cost += self.l2_reg * T.sqr(W).sum()
            #    W = self.lstm_layers[i].W_xo
            #    self.finetune_cost += self.l2_reg * T.sqr(W).sum()
            #    W = self.lstm_layers[i].W_ho
            #    self.finetune_cost += self.l2_reg * T.sqr(W).sum()
            for i in xrange(self.hidden_layers_number):
                W = self.fc_layers[i].W
                self.finetune_cost += self.l2_reg * T.sqr(W).sum()
예제 #6
0
    def __init__(self,
                 numpy_rng=None,
                 theano_rng=None,
                 cfg=[],
                 non_maximum_erasing=False,
                 use_fast=False):

        self.conv_layers = []
        self.n_outs = cfg.n_outs
        self.layers = []
        self.extra_layers = []
        self.conv_layer_num = len(cfg.conv_layer_configs)
        self.dnn_layer_num = len(cfg.hidden_layers_sizes)
        self.extra_layers_sizes = cfg.extra_layers_sizes

        self.x = T.tensor4('x')
        self.extra_x = T.matrix('extra_x')

        for i in xrange(self.conv_layer_num):
            if i == 0:
                input = self.x
            else:
                input = self.conv_layers[-1].output
            config = cfg.conv_layer_configs[i]
            print config['filter_shape']
            conv_layer = ConvLayerForward(numpy_rng=numpy_rng,
                                          input=input,
                                          filter_shape=config['filter_shape'],
                                          poolsize=config['poolsize'],
                                          activation=config['activation'],
                                          flatten=config['flatten'],
                                          use_fast=use_fast)
            self.layers.append(conv_layer)
            self.conv_layers.append(conv_layer)
        self.conv_output_dim = config['output_shape'][1] * config[
            'output_shape'][2] * config['output_shape'][3]
        cfg.n_ins = config['output_shape'][1] * config['output_shape'][
            2] * config['output_shape'][3]

        print self.conv_output_dim
        print cfg.n_ins
        print 'Extra input dimension: ' + str(cfg.extra_dim)
        for i in xrange(len(self.extra_layers_sizes)):
            if i == 0:
                input_size = cfg.extra_dim
                layer_input = self.extra_x
            else:
                input_size = self.extra_layers_sizes[i - 1]
                layer_input = self.extra_layers[-1].output
            W = None
            b = None
            attend_layer = HiddenLayer(rng=numpy_rng,
                                       input=layer_input,
                                       n_in=input_size,
                                       n_out=self.extra_layers_sizes[i],
                                       W=W,
                                       b=b)
            self.extra_layers.append(attend_layer)
        self.extra_output = self.extra_layers[-1].output
        self.extra_output = T.nnet.softmax(self.extra_layers[-1].output)

        print 'layer num: ' + str(len(self.layers) - 1)
        for i in xrange(self.dnn_layer_num):
            if i == 0:
                # 1. Join two features (magnitude + phase)
                input_size = self.conv_output_dim + self.extra_layers_sizes[-1]
                layer_input = T.join(1, self.layers[-1].output,
                                     self.extra_output)
                # 2. Weighted Sum (magnitude * phase)
                #input_size = self.conv_output_dim
                #layer_input = self.layers[-1].output * self.extra_output
            else:
                input_size = cfg.hidden_layers_sizes[i - 1]
                layer_input = self.layers[-1].output
            W = None
            b = None
            hidden_layer = HiddenLayer(rng=numpy_rng,
                                       input=layer_input,
                                       n_in=input_size,
                                       n_out=cfg.hidden_layers_sizes[i],
                                       W=W,
                                       b=b)
            self.layers.append(hidden_layer)

        print 'layer num: ' + str(len(self.layers) - 1)
        logLayer = OutputLayer(input=self.layers[-1].output,
                               n_in=cfg.hidden_layers_sizes[-1],
                               n_out=self.n_outs)
        self.layers.append(logLayer)
        print 'layer num: ' + str(len(self.layers) - 1)
예제 #7
0
    def __init__(self,
                 numpy_rng=None,
                 theano_rng=None,
                 cfg=None,
                 non_maximum_erasing=False,
                 use_fast=False):

        self.n_outs = cfg.n_outs
        self.layers = []
        self.extra_layers = []
        self.conv_layer_num = len(cfg.conv_layer_configs)
        self.dnn_layer_num = len(cfg.hidden_layers_sizes)
        self.extra_layers_sizes = cfg.extra_layers_sizes

        self.x = T.tensor4('x')
        self.extra_x = T.matrix('extra_x')

        for i in xrange(self.conv_layer_num):
            if i == 0:
                input = self.x
            else:
                input = self.layers[-1].output
            config = cfg.conv_layer_configs[i]
            conv_layer = ConvLayerForward(numpy_rng=numpy_rng,
                                          input=input,
                                          filter_shape=config['filter_shape'],
                                          poolsize=config['poolsize'],
                                          activation=config['activation'],
                                          flatten=config['flatten'],
                                          use_fast=use_fast)
            self.layers.append(conv_layer)

        self.conv_output_dim = config['output_shape'][1] * config[
            'output_shape'][2] * config['output_shape'][3]
        cfg.n_ins = config['output_shape'][1] * config['output_shape'][
            2] * config['output_shape'][3]

        for i in xrange(len(self.extra_layers_sizes)):
            if i == 0:
                input_size = 6400 * 5
                input_size = cfg.extra_dim
                layer_input = self.extra_x
            else:
                input_size = self.extra_layers_sizes[i - 1]
                layer_input = self.extra_layers[-1].output
            W = None
            b = None
            attend_layer = HiddenLayer(rng=numpy_rng,
                                       input=layer_input,
                                       n_in=input_size,
                                       n_out=self.extra_layers_sizes[i],
                                       W=W,
                                       b=b)
            self.extra_layers.append(attend_layer)

        self.extra_layers[-1].att_e_tl = self.extra_layers[-1].output
        self.extra_layers[-1].att_a_tl = T.nnet.softmax(
            self.extra_layers[-1].att_e_tl)
        #self.extra_layers[-1].att_a_tl = T.exp(self.extra_layers[-1].att_e_tl)/(T.exp(self.extra_layers[-1].att_e_tl)).sum(0,keepdims=True)

        for i in xrange(self.dnn_layer_num):
            if i == 0:
                #input_size = self.conv_output_dim
                #layer_input = (self.extra_layers[-1].att_a_tl*self.layers[-1].output)
                input_size = self.conv_output_dim + self.extra_layers_sizes[-1]
                layer_input = T.join(1, self.extra_layers[-1].att_a_tl,
                                     self.layers[-1].output)
            else:
                input_size = cfg.hidden_layers_sizes[i - 1]
                layer_input = self.layers[-1].output
            W = None
            b = None
            hidden_layer = HiddenLayer(rng=numpy_rng,
                                       input=layer_input,
                                       n_in=input_size,
                                       n_out=cfg.hidden_layers_sizes[i],
                                       W=W,
                                       b=b)
            self.layers.append(hidden_layer)

        logLayer = OutputLayer(input=self.layers[-1].output,
                               n_in=cfg.hidden_layers_sizes[-1],
                               n_out=self.n_outs)
        self.layers.append(logLayer)
예제 #8
0
    def __init__(self,
                 numpy_rng,
                 theano_rng=None,
                 cfg=None,
                 testing=False,
                 input=None):

        self.layers = []
        self.extra_layers = []
        self.params = []
        self.delta_params = []
        self.n_ins = cfg.n_ins
        self.n_outs = cfg.n_outs
        self.conv_layers = []

        self.cfg = cfg
        self.conv_layer_configs = cfg.conv_layer_configs
        self.conv_activation = cfg.conv_activation
        self.use_fast = cfg.use_fast

        self.extra_x = T.matrix('extra_x')

        # 1.5 attention
        self.extra_dim = cfg.extra_dim
        print 'Extra input dimension: ' + str(cfg.extra_dim)
        self.extra_layers_sizes = cfg.extra_layers_sizes

        # 2. dnn
        self.hidden_layers_sizes = cfg.hidden_layers_sizes
        self.hidden_layers_number = len(self.hidden_layers_sizes)
        self.activation = cfg.activation

        if not theano_rng:
            theano_rng = RandomStreams(numpy_rng.randint(2**30))
        if input == None:
            self.x = T.matrix('x')
        else:
            self.x = input
        self.y = T.matrix('y')

        #######################
        # build cnn layers   #
        #######################
        print '1. start to build cnn mag layer: ' + str(
            self.conv_layer_configs)
        self.conv_layer_num = len(self.conv_layer_configs)
        for i in xrange(self.conv_layer_num):
            if i == 0:
                input = self.x
            else:
                input = self.layers[-1].output
            config = self.conv_layer_configs[i]
            conv_layer = ConvLayer(numpy_rng=numpy_rng,
                                   input=input,
                                   input_shape=config['input_shape'],
                                   filter_shape=config['filter_shape'],
                                   poolsize=config['poolsize'],
                                   activation=self.conv_activation,
                                   flatten=config['flatten'],
                                   use_fast=self.use_fast,
                                   testing=testing)
            self.layers.append(conv_layer)
            self.conv_layers.append(conv_layer)
            self.params.extend(conv_layer.params)
            self.delta_params.extend(conv_layer.delta_params)

        self.conv_output_dim = config['output_shape'][1] * config[
            'output_shape'][2] * config['output_shape'][3]
        cfg.n_ins = config['output_shape'][1] * config['output_shape'][
            2] * config['output_shape'][3]

        #######################################
        # build phase-based attention layer   #
        #######################################
        # 0. phase-based attention
        print '2. start to build attend layer: ' + str(self.extra_layers_sizes)
        for i in xrange(len(self.extra_layers_sizes)):
            if i == 0:
                input_size = cfg.extra_dim
                layer_input = self.extra_x
            else:
                input_size = self.extra_layers_sizes[i - 1]
                layer_input = self.extra_layers[-1].output

            W = None
            b = None
            attend_layer = HiddenLayer(rng=numpy_rng,
                                       input=layer_input,
                                       n_in=input_size,
                                       n_out=self.extra_layers_sizes[i],
                                       W=W,
                                       b=b,
                                       activation=self.activation)
            print '\tbuild attend layer: ' + str(input_size) + ' x ' + str(
                attend_layer.n_out)
            self.extra_layers.append(attend_layer)
            self.params.extend(attend_layer.params)
            self.delta_params.extend(attend_layer.delta_params)
        self.extra_output = self.extra_layers[-1].output
        self.extra_output = T.nnet.softmax(self.extra_layers[-1].output)

        #self.extra_output_rand = numpy.asarray(numpy_rng.uniform(
        #            low=-0.1,
        #            high=1.0,
        #            size=(32,20)), dtype=theano.config.floatX)
        #self.extra_output = theano.shared(value=self.extra_output_rand, name='rand', borrow=True)
        print '2. finish attend layer softmax(0): ' + str(
            self.extra_layers[-1].n_out)
        #######################################
        # build dnnv                          #
        #######################################

        print '3. start to build dnnv layer: ' + str(self.hidden_layers_number)
        for i in xrange(self.hidden_layers_number):
            # construct the hidden layer
            if i == 0:
                # 1. Join two features (magnitude + phase)
                input_size = self.conv_output_dim + self.extra_layers_sizes[-1]
                layer_input = T.join(1, self.layers[-1].output,
                                     self.extra_output)
                # 2. Weighted Sum (magnitude * phase)
                #input_size = self.conv_output_dim
                #layer_input = self.layers[-1].output * self.extra_output
            else:
                input_size = self.hidden_layers_sizes[i - 1]
                layer_input = self.layers[-1].output

            W = None
            b = None
            hidden_layer = HiddenLayer(rng=numpy_rng,
                                       input=layer_input,
                                       n_in=input_size,
                                       n_out=self.hidden_layers_sizes[i],
                                       W=W,
                                       b=b,
                                       activation=self.activation)
            print '\tbuild dnnv layer: ' + str(input_size) + ' x ' + str(
                hidden_layer.n_out)
            # add the layer to our list of layers
            self.layers.append(hidden_layer)
            self.params.extend(hidden_layer.params)
            self.delta_params.extend(hidden_layer.delta_params)
        print '3. finish dnnv layer: ' + str(self.layers[-1].n_out)

        #######################################
        # build logistic regression layer     #
        #######################################
        print '4. start to build log layer: 1'
        # We now need to add a logistic layer on top of the MLP
        self.logLayer = OutputLayer(input=self.layers[-1].output,
                                    n_in=self.hidden_layers_sizes[-1],
                                    n_out=self.n_outs)
        print '\tbuild final layer: ' + str(
            self.layers[-1].n_out) + ' x ' + str(self.n_outs)

        self.layers.append(self.logLayer)
        self.params.extend(self.logLayer.params)
        self.delta_params.extend(self.logLayer.delta_params)
        print '4. finish log layer: ' + str(self.layers[-1].n_out)
        print 'Total layers: ' + str(len(self.layers))

        self.finetune_cost = self.logLayer.l2(self.y)
        self.errors = self.logLayer.errors(self.y)

        sys.stdout.flush()
예제 #9
0
    def __init__(self, numpy_rng, theano_rng=None, cfg = None, testing = False, input = None):

        self.cfg = cfg
        self.params = []
        self.delta_params   = []
        self.n_ins = cfg.n_ins; self.n_outs = cfg.n_outs
        self.l1_reg = cfg.l1_reg
        self.l2_reg = cfg.l2_reg
        self.do_maxout = cfg.do_maxout; self.pool_size = cfg.pool_size
        self.max_col_norm = cfg.max_col_norm

        self.layers = []
        self.conv_layers = []
        self.lstm_layers = []
        self.fc_layers = []

        # 1. conv 
        self.conv_layer_configs = cfg.conv_layer_configs
        self.conv_activation = cfg.conv_activation
        self.conv_layers_number = len(self.conv_layer_configs)
        self.use_fast = cfg.use_fast
        # 2. lstm
        self.lstm_layers_sizes = cfg.lstm_layers_sizes
        self.lstm_layers_number = len(self.lstm_layers_sizes)
        # 3. dnn
        self.hidden_layers_sizes = cfg.hidden_layers_sizes
        self.hidden_layers_number = len(self.hidden_layers_sizes)
        self.activation = cfg.activation

        if not theano_rng:
            theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))

        if input == None:
            self.x = T.matrix('x')
        else:
            self.x = input
        self.y = T.matrix('y') 
       
        #######################
        # build conv layers   #
        #######################
        print '1. start to build conv layer: '+ str(self.conv_layers_number)
        for i in xrange(self.conv_layers_number):
            if i == 0:
                input = self.x
            else:
                input = self.conv_layers[-1].output
            config = self.conv_layer_configs[i]
            conv_layer = ConvLayer(numpy_rng=numpy_rng, input=input,
								input_shape = config['input_shape'], 
								filter_shape = config['filter_shape'], 
								poolsize = config['poolsize'],
								activation = self.conv_activation, 
								flatten = config['flatten'], 
								use_fast = self.use_fast, testing = testing)
            print '\tbuild conv layer: ' +str(config['input_shape'])
            self.layers.append(conv_layer)
            self.conv_layers.append(conv_layer)
            self.params.extend(conv_layer.params)
            self.delta_params.extend(conv_layer.delta_params)

        self.conv_output_dim = config['output_shape'][1] * config['output_shape'][2] * config['output_shape'][3]
        print '\t cnn out: '+ str(self.conv_output_dim)
        cfg.n_ins = config['output_shape'][1] * config['output_shape'][2] * config['output_shape'][3]
        print '1. finish conv layer: '+ str(self.layers[-1].n_out)

        #######################
        # build lstm layers   #
        #######################
        print '2. start to build lstm layer: '+ str(self.lstm_layers_number)
        for i in xrange(self.lstm_layers_number):
            if i == 0:
                input_size = self.conv_output_dim 
                input = self.layers[-1].output
            else:
                input_size = self.lstm_layers_sizes[i - 1]
                input = self.layers[-1].output
            print 'build lstm layer: ' + str(input_size)
            lstm_layer = LSTMLayer(rng=numpy_rng, input=input, n_in=input_size, n_out=self.lstm_layers_sizes[i])
            print '\tbuild lstm layer: ' + str(input_size) +' x '+ str(lstm_layer.n_out)
            self.layers.append(lstm_layer)
            self.lstm_layers.append(lstm_layer)
            self.params.extend(lstm_layer.params)
            self.delta_params.extend(lstm_layer.delta_params)
        print '2. finish lstm layer: '+ str(self.layers[-1].n_out)

        #######################
        # build dnnv layers   #
        #######################
        print '3. start to build dnnv layer: '+ str(self.hidden_layers_number)
        for i in xrange(self.hidden_layers_number):
            if i == 0:
                input_size = self.layers[-1].n_out
            else:
                input_size = self.hidden_layers_sizes[i - 1]
            input = self.layers[-1].output
            fc_layer = HiddenLayer(rng=numpy_rng, input=input, n_in=input_size, n_out=self.hidden_layers_sizes[i])
            print '\tbuild dnnv layer: ' + str(input_size) +' x '+ str(fc_layer.n_out)
            self.layers.append(fc_layer)
            self.fc_layers.append(fc_layer)
            self.params.extend(fc_layer.params)
            self.delta_params.extend(fc_layer.delta_params)
        print '3. finish dnnv layer: '+ str(self.layers[-1].n_out)

        #######################
        # build log layers   #
        #######################
        print '4. start to build log layer: 1'
        input_size = self.layers[-1].n_out
        input = self.layers[-1].output
        logLayer = OutputLayer(input=input, n_in=input_size, n_out=self.n_outs)
        print '\tbuild final layer: ' + str(input_size) +' x '+ str(fc_layer.n_out)
        self.layers.append(logLayer)
        self.params.extend(logLayer.params)
        self.delta_params.extend(logLayer.delta_params)
        print '4. finish log layer: '+ str(self.layers[-1].n_out)
        print 'Total layers: '+ str(len(self.layers))

        sys.stdout.flush()

        self.finetune_cost = self.layers[-1].l2(self.y)
        self.errors = self.layers[-1].errors(self.y)

        if self.l2_reg is not None:
            for i in xrange(self.hidden_layers_number):
                W = self.layers[i].W
                self.finetune_cost += self.l2_reg * T.sqr(W).sum()
예제 #10
0
    def __init__(self,
                 numpy_rng,
                 theano_rng=None,
                 upper_hidden_layers_sizes=[500, 500],
                 n_outs=10,
                 tower1_hidden_layers_sizes=[500, 500],
                 tower1_n_ins=100,
                 tower2_hidden_layers_sizes=[500, 500],
                 tower2_n_ins=100,
                 activation=T.nnet.sigmoid,
                 do_maxout=False,
                 pool_size=1,
                 do_pnorm=False,
                 pnorm_order=1,
                 max_col_norm=None,
                 l1_reg=None,
                 l2_reg=None):

        self.tower1_layers = []
        self.tower2_layers = []
        self.upper_layers = []

        self.params = []
        self.delta_params = []

        self.max_col_norm = max_col_norm
        self.l1_reg = l1_reg
        self.l2_reg = l2_reg

        if not theano_rng:
            theano_rng = RandomStreams(numpy_rng.randint(2**30))
        # allocate symbolic variables for the data
        self.x = T.matrix('x')
        self.y = T.ivector('y')

        self.tower1_input = self.x[:, 0:tower1_n_ins]
        self.tower2_input = self.x[:,
                                   tower1_n_ins:(tower1_n_ins + tower2_n_ins)]

        # build tower1
        for i in xrange(len(tower1_hidden_layers_sizes)):
            if i == 0:
                input_size = tower1_n_ins
                layer_input = self.tower1_input
            else:
                input_size = tower1_hidden_layers_sizes[i - 1]
                layer_input = self.tower1_layers[-1].output

            layer = HiddenLayer(rng=numpy_rng,
                                input=layer_input,
                                n_in=input_size,
                                n_out=tower1_hidden_layers_sizes[i],
                                activation=T.nnet.sigmoid)
            # add the layer to our list of layers
            self.tower1_layers.append(layer)
            self.params.extend(layer.params)
            self.delta_params.extend(layer.delta_params)

        # build tower2
        for i in xrange(len(tower2_hidden_layers_sizes)):
            if i == 0:
                input_size = tower2_n_ins
                layer_input = self.tower2_input
            else:
                input_size = tower2_hidden_layers_sizes[i - 1]
                layer_input = self.tower2_layers[-1].output

            layer = HiddenLayer(rng=numpy_rng,
                                input=layer_input,
                                n_in=input_size,
                                n_out=tower2_hidden_layers_sizes[i],
                                activation=T.nnet.sigmoid)
            # add the layer to our list of layers
            self.tower2_layers.append(layer)
            self.params.extend(layer.params)
            self.delta_params.extend(layer.delta_params)

        for i in xrange(len(upper_hidden_layers_sizes)):
            # construct the sigmoidal layer
            if i == 0:
                input_size = tower1_hidden_layers_sizes[
                    -1] + tower2_hidden_layers_sizes[-1]
                layer_input = T.concatenate([
                    self.tower1_layers[-1].output,
                    self.tower2_layers[-1].output
                ],
                                            axis=1)
            else:
                input_size = upper_hidden_layers_sizes[i - 1]
                layer_input = self.upper_layers[-1].output

            sigmoid_layer = HiddenLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=upper_hidden_layers_sizes[i],
                                        activation=activation)
            # add the layer to our list of layers
            self.upper_layers.append(sigmoid_layer)
            self.params.extend(sigmoid_layer.params)
            self.delta_params.extend(sigmoid_layer.delta_params)
        # We now need to add a logistic layer on top of the MLP
        self.logLayer = LogisticRegression(input=self.upper_layers[-1].output,
                                           n_in=upper_hidden_layers_sizes[-1],
                                           n_out=n_outs)

        self.upper_layers.append(self.logLayer)
        self.params.extend(self.logLayer.params)
        self.delta_params.extend(self.logLayer.delta_params)

        # construct a function that implements one step of finetunining

        # compute the cost for second phase of training,
        # defined as the negative log likelihood
        self.finetune_cost = self.logLayer.negative_log_likelihood(self.y)
        self.errors = self.logLayer.errors(self.y)
예제 #11
0
    def __init__(
            self,
            task_id,
            numpy_rng,
            theano_rng=None,
            cfg=None,  # the network configuration
            dnn_shared=None,
            shared_layers=[],
            input=None):

        self.layers = []
        self.params = []
        self.delta_params = []

        self.cfg = cfg
        self.n_ins = cfg.n_ins
        self.n_outs = cfg.n_outs
        self.hidden_layers_sizes = cfg.hidden_layers_sizes
        self.hidden_layers_number = len(self.hidden_layers_sizes)
        self.activation = cfg.activation

        self.do_maxout = cfg.do_maxout
        self.pool_size = cfg.pool_size

        self.max_col_norm = cfg.max_col_norm
        self.l1_reg = cfg.l1_reg
        self.l2_reg = cfg.l2_reg

        self.non_updated_layers = cfg.non_updated_layers

        if not theano_rng:
            theano_rng = RandomStreams(numpy_rng.randint(2**30))
        # allocate symbolic variables for the data
        if input == None:
            self.x = T.matrix('x')
        else:
            self.x = input
        if task_id == 0:
            self.y = T.ivector('y')
        else:
            self.y = T.matrix('y')

        #######################
        # build dnnv layers   #
        #######################
        print "=============="
        print "Task ID: %d" % (task_id)
        print "=============="
        print '1. start to build dnn layer: ' + str(self.hidden_layers_number)
        for i in xrange(self.hidden_layers_number):
            if i == 0:
                input_size = self.n_ins
                input = self.x
            else:
                input_size = self.hidden_layers_sizes[i - 1]
                input = self.layers[-1].output
            W = None
            b = None
            if (i in shared_layers):
                print "shared layer = %d" % (i)
                W = dnn_shared.layers[i].W
                b = dnn_shared.layers[i].b

            hidden_layer = HiddenLayer(rng=numpy_rng,
                                       input=input,
                                       n_in=input_size,
                                       n_out=self.hidden_layers_sizes[i],
                                       W=W,
                                       b=b,
                                       activation=self.activation)
            print '\tbuild lstm layer: ' + str(input_size) + ' x ' + str(
                hidden_layer.n_out)
            self.layers.append(hidden_layer)
            self.params.extend(hidden_layer.params)
            self.delta_params.extend(hidden_layer.delta_params)
        print '1. finish dnnv layer: ' + str(self.layers[-1].n_out)

        #######################
        # build log layers   #
        #######################
        print '2. start to build final layer: 1'
        input_size = self.layers[-1].n_out
        input = self.layers[-1].output
        if task_id == 0:
            self.logLayer = LogisticRegression(
                input=self.layers[-1].output,
                n_in=self.hidden_layers_sizes[-1],
                n_out=self.n_outs)
            print '\tbuild final layer (classification): ' + str(
                input_size) + ' x ' + str(self.logLayer.n_out)
            self.finetune_cost = self.logLayer.negative_log_likelihood(self.y)
            self.errors = self.logLayer.errors(self.y)
        else:
            self.logLayer = OutputLayer(input=input,
                                        n_in=input_size,
                                        n_out=self.n_outs)
            print '\tbuild final layer (regression): ' + str(
                input_size) + ' x ' + str(self.logLayer.n_out)
            self.finetune_cost = self.logLayer.l2(self.y)
            self.errors = self.logLayer.errors(self.y)

        self.layers.append(self.logLayer)
        self.params.extend(self.logLayer.params)
        self.delta_params.extend(self.logLayer.delta_params)
        print '2. finish log layer: ' + str(self.layers[-1].n_out)
        print 'Total layers: ' + str(len(self.layers))

        sys.stdout.flush()

        if self.l2_reg is not None:
            for i in xrange(self.hidden_layers_number):
                W = self.layers[i].W
                self.finetune_cost += self.l2_reg * T.sqr(W).sum()
예제 #12
0
파일: sda.py 프로젝트: ducle90/chai_share
    def __init__(self,
                 numpy_rng,
                 theano_rng=None,
                 n_ins=784,
                 hidden_layers_sizes=[500, 500],
                 n_outs=10,
                 corruption_levels=[0.1, 0.1],
                 pool_size=3,
                 sparsity=None,
                 sparsity_weight=None,
                 first_reconstruct_activation=T.tanh):

        self.sigmoid_layers = []
        self.dA_layers = []
        self.params = []
        self.n_layers = len(hidden_layers_sizes)

        assert self.n_layers > 0

        if not theano_rng:
            theano_rng = RandomStreams(numpy_rng.randint(2**30))
        # allocate symbolic variables for the data
        self.x = T.matrix('x')
        self.y = T.ivector('y')

        for i in xrange(self.n_layers):
            # construct the sigmoidal layer

            # the size of the input is either the number of hidden units of
            # the layer below or the input size if we are on the first layer
            if i == 0:
                input_size = n_ins
            else:
                input_size = hidden_layers_sizes[i - 1]

            # the input to this layer is either the activation of the hidden
            # layer below or the input of the SdA if you are on the first
            # layer
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[-1].output

            sigmoid_layer = HiddenLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layers_sizes[i] *
                                        pool_size,
                                        activation=(lambda x: 1.0 * x),
                                        do_maxout=True,
                                        pool_size=pool_size)
            # add the layer to our list of layers
            self.sigmoid_layers.append(sigmoid_layer)

            self.params.extend(sigmoid_layer.params)

            # Construct a denoising autoencoder that shared weights with this layer
            if i == 0:
                reconstruct_activation = first_reconstruct_activation
            else:
                reconstruct_activation = (lambda x: 1.0 * x)
#               reconstruct_activation = first_reconstruct_activation
            dA_layer = dA_maxout(numpy_rng=numpy_rng,
                                 theano_rng=theano_rng,
                                 input=layer_input,
                                 n_visible=input_size,
                                 n_hidden=hidden_layers_sizes[i] * pool_size,
                                 W=sigmoid_layer.W,
                                 bhid=sigmoid_layer.b,
                                 sparsity=sparsity,
                                 sparsity_weight=sparsity_weight,
                                 pool_size=pool_size,
                                 reconstruct_activation=reconstruct_activation)
            self.dA_layers.append(dA_layer)

        # We now need to add a logistic layer on top of the MLP
        self.logLayer = LogisticRegression(
            input=self.sigmoid_layers[-1].output,
            n_in=hidden_layers_sizes[-1],
            n_out=n_outs)

        self.sigmoid_layers.append(self.logLayer)
        self.params.extend(self.logLayer.params)
예제 #13
0
    def __init__(self,
                 numpy_rng,
                 theano_rng=None,
                 cfg=None,
                 dnn_shared=None,
                 shared_layers=[]):

        self.layers = []
        self.dropout_layers = []
        self.params = []
        self.delta_params = []

        self.cfg = cfg
        self.n_ins = cfg.n_ins
        self.n_outs = cfg.n_outs
        self.hidden_layers_sizes = cfg.hidden_layers_sizes
        self.hidden_layers_number = len(self.hidden_layers_sizes)
        self.activation = cfg.activation

        self.do_maxout = cfg.do_maxout
        self.pool_size = cfg.pool_size
        self.input_dropout_factor = cfg.input_dropout_factor
        self.dropout_factor = cfg.dropout_factor

        self.max_col_norm = cfg.max_col_norm
        self.l1_reg = cfg.l1_reg
        self.l2_reg = cfg.l2_reg

        if not theano_rng:
            theano_rng = RandomStreams(numpy_rng.randint(2**30))
        # allocate symbolic variables for the data
        self.x = T.matrix('x')
        self.y = T.ivector('y')

        for i in xrange(self.hidden_layers_number):
            # construct the hidden layer
            if i == 0:
                input_size = self.n_ins
                layer_input = self.x
                if self.input_dropout_factor > 0.0:
                    dropout_layer_input = _dropout_from_layer(
                        theano_rng, self.x, self.input_dropout_factor)
                else:
                    dropout_layer_input = self.x
            else:
                input_size = self.hidden_layers_sizes[i - 1]
                layer_input = (
                    1 - self.dropout_factor[i - 1]) * self.layers[-1].output
                dropout_layer_input = self.dropout_layers[-1].dropout_output

            W = None
            b = None
            if (i in shared_layers):
                W = dnn_shared.layers[i].W
                b = dnn_shared.layers[i].b

            if self.do_maxout == False:
                dropout_layer = DropoutHiddenLayer(
                    rng=numpy_rng,
                    input=dropout_layer_input,
                    n_in=input_size,
                    n_out=self.hidden_layers_sizes[i],
                    W=W,
                    b=b,
                    activation=self.activation,
                    dropout_factor=self.dropout_factor[i])
                hidden_layer = HiddenLayer(rng=numpy_rng,
                                           input=layer_input,
                                           n_in=input_size,
                                           n_out=self.hidden_layers_sizes[i],
                                           activation=self.activation,
                                           W=dropout_layer.W,
                                           b=dropout_layer.b)
            else:
                dropout_layer = DropoutHiddenLayer(
                    rng=numpy_rng,
                    input=dropout_layer_input,
                    n_in=input_size,
                    n_out=self.hidden_layers_sizes[i] * self.pool_size,
                    W=W,
                    b=b,
                    activation=(lambda x: 1.0 * x),
                    dropout_factor=self.dropout_factor[i],
                    do_maxout=True,
                    pool_size=self.pool_size)
                hidden_layer = HiddenLayer(rng=numpy_rng,
                                           input=layer_input,
                                           n_in=input_size,
                                           n_out=self.hidden_layers_sizes[i] *
                                           self.pool_size,
                                           activation=(lambda x: 1.0 * x),
                                           W=dropout_layer.W,
                                           b=dropout_layer.b,
                                           do_maxout=True,
                                           pool_size=self.pool_size)
            # add the layer to our list of layers
            self.layers.append(hidden_layer)
            self.dropout_layers.append(dropout_layer)
            self.params.extend(dropout_layer.params)
            self.delta_params.extend(dropout_layer.delta_params)
        # We now need to add a logistic layer on top of the MLP
        self.dropout_logLayer = LogisticRegression(
            input=self.dropout_layers[-1].dropout_output,
            n_in=self.hidden_layers_sizes[-1],
            n_out=self.n_outs)

        self.logLayer = LogisticRegression(
            input=(1 - self.dropout_factor[-1]) * self.layers[-1].output,
            n_in=self.hidden_layers_sizes[-1],
            n_out=self.n_outs,
            W=self.dropout_logLayer.W,
            b=self.dropout_logLayer.b)

        self.dropout_layers.append(self.dropout_logLayer)
        self.layers.append(self.logLayer)
        self.params.extend(self.dropout_logLayer.params)
        self.delta_params.extend(self.dropout_logLayer.delta_params)

        # compute the cost
        self.finetune_cost = self.dropout_logLayer.negative_log_likelihood(
            self.y)
        self.errors = self.logLayer.errors(self.y)

        if self.l1_reg is not None:
            for i in xrange(self.hidden_layers_number):
                W = self.layers[i].W
                self.finetune_cost += self.l1_reg * (abs(W).sum())

        if self.l2_reg is not None:
            for i in xrange(self.hidden_layers_number):
                W = self.layers[i].W
                self.finetune_cost += self.l2_reg * T.sqr(W).sum()
예제 #14
0
    def __init__(self, numpy_rng, theano_rng=None,
                 batch_size = 256, n_outs=500,
		 sparsity = None, sparsity_weight = None, sparse_layer = 3,
                 conv_layer_configs = [],
                 hidden_layers_sizes=[500, 500],
                 conv_activation = T.nnet.sigmoid,
                 full_activation = T.nnet.sigmoid,
                 use_fast = False):

        self.layers = []
        self.params = []
        self.delta_params   = []

        self.sparsity = sparsity
        self.sparsity_weight = sparsity_weight
        self.sparse_layer = sparse_layer

        if not theano_rng:
            theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))
        # allocate symbolic variables for the data
        self.x = T.matrix('x')  
        self.y = T.ivector('y') 
        
        self.conv_layer_num = len(conv_layer_configs)
        self.full_layer_num = len(hidden_layers_sizes)

        for i in xrange(self.conv_layer_num):
            if i == 0:
                input = self.x
                is_input_layer = True
            else:
                input = self.layers[-1].output
                is_input_layer = False
            config = conv_layer_configs[i]
            conv_layer = ConvLayer(numpy_rng=numpy_rng, input=input, is_input_layer = is_input_layer,
			input_shape = config['input_shape'], filter_shape = config['filter_shape'], poolsize = config['poolsize'],
			activation = conv_activation, flatten = config['flatten'])
	    self.layers.append(conv_layer)
	    self.params.extend(conv_layer.params)
            self.delta_params.extend(conv_layer.delta_params)

        self.conv_output_dim = config['output_shape'][1] * config['output_shape'][2] * config['output_shape'][3]

        for i in xrange(self.full_layer_num):
            # construct the sigmoidal layer
            if i == 0:
                input_size = self.conv_output_dim
            else:
                input_size = hidden_layers_sizes[i - 1]
            layer_input = self.layers[-1].output

            sigmoid_layer = HiddenLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layers_sizes[i],
                                        activation=full_activation)
            # add the layer to our list of layers
            self.layers.append(sigmoid_layer)
            self.params.extend(sigmoid_layer.params)
            self.delta_params.extend(sigmoid_layer.delta_params)

	# We now need to add a logistic layer on top of the MLP
	self.logLayer = LogisticRegression(
			       input=self.layers[-1].output,
			       n_in=hidden_layers_sizes[-1], n_out=n_outs)
        self.layers.append(self.logLayer)
        self.params.extend(self.logLayer.params)
        self.delta_params.extend(self.logLayer.delta_params)

	if self.sparsity_weight is not None:
            sparsity_level = T.extra_ops.repeat(self.sparsity, 630)
	    avg_act = self.sigmoid_layers[sparse_layer].output.mean(axis=0)
	    kl_div = self.kl_divergence(sparsity_level, avg_act)
	    self.finetune_cost = self.logLayer.negative_log_likelihood(self.y) + self.sparsity_weight * kl_div.sum()     
	else:
            self.finetune_cost = self.logLayer.negative_log_likelihood(self.y)

        self.errors = self.logLayer.errors(self.y)