def build_model(): ################# # Regular model # ################# input_size = data_sizes["sliced:data:sax"] input_size_mask = data_sizes["sliced:data:sax:is_not_padded"] input_size_locations = data_sizes["sliced:data:sax:locations"] l0 = nn.layers.InputLayer(input_size) lin_slice_mask = nn.layers.InputLayer(input_size_mask) lin_slice_locations = nn.layers.InputLayer(input_size_locations) # PREPROCESS SLICES SEPERATELY # Convolutional layers and some dense layers are defined in a submodel l0_slices = nn.layers.ReshapeLayer(l0, (-1, [2], [3], [4])) import je_ss_jonisc80_leaky_convroll_augzoombright submodel = je_ss_jonisc80_leaky_convroll_augzoombright.build_model( l0_slices) # Systole Dense layers l_sys_mu = submodel["meta_outputs"]["systole:mu"] l_sys_sigma = submodel["meta_outputs"]["systole:sigma"] # Diastole Dense layers l_dia_mu = submodel["meta_outputs"]["diastole:mu"] l_dia_sigma = submodel["meta_outputs"]["diastole:sigma"] # AGGREGATE SLICES PER PATIENT l_scaled_slice_locations = layers.TrainableScaleLayer( lin_slice_locations, scale=nn.init.Constant(0.1), trainable=False) # Systole l_pat_sys_ss_mu = nn.layers.ReshapeLayer(l_sys_mu, (-1, nr_slices)) l_pat_sys_ss_sigma = nn.layers.ReshapeLayer(l_sys_sigma, (-1, nr_slices)) l_pat_sys_aggr_mu_sigma = layers.JeroenLayer([ l_pat_sys_ss_mu, l_pat_sys_ss_sigma, lin_slice_mask, l_scaled_slice_locations ], rescale_input=100.) l_systole = layers.MuSigmaErfLayer(l_pat_sys_aggr_mu_sigma) # Diastole l_pat_dia_ss_mu = nn.layers.ReshapeLayer(l_dia_mu, (-1, nr_slices)) l_pat_dia_ss_sigma = nn.layers.ReshapeLayer(l_dia_sigma, (-1, nr_slices)) l_pat_dia_aggr_mu_sigma = layers.JeroenLayer([ l_pat_dia_ss_mu, l_pat_dia_ss_sigma, lin_slice_mask, l_scaled_slice_locations ], rescale_input=100.) l_diastole = layers.MuSigmaErfLayer(l_pat_dia_aggr_mu_sigma) submodels = [submodel] return { "inputs": { "sliced:data:sax": l0, "sliced:data:sax:is_not_padded": lin_slice_mask, "sliced:data:sax:locations": lin_slice_locations, }, "outputs": { "systole": l_systole, "diastole": l_diastole, }, "regularizable": dict({}, **{ k: v for d in [ model["regularizable"] for model in submodels if "regularizable" in model ] for k, v in d.items() }), "pretrained": { je_ss_jonisc80_leaky_convroll_augzoombright.__name__: submodel["outputs"], } }
def build_model(): ################# # Regular model # ################# input_size = data_sizes["sliced:data:sax"] input_size_mask = data_sizes["sliced:data:sax:is_not_padded"] input_size_locations = data_sizes["sliced:data:sax:locations"] l0 = nn.layers.InputLayer(input_size) lin_slice_mask = nn.layers.InputLayer(input_size_mask) lin_slice_locations = nn.layers.InputLayer(input_size_locations) # PREPROCESS SLICES SEPERATELY l0_slices = nn.layers.ReshapeLayer(l0, (batch_size * nr_slices, 30, patch_px, patch_px)) # (bxs, t, i, j) subsample_factor = 2 l0_slices_subsampled = nn.layers.SliceLayer(l0_slices, axis=1, indices=slice(0, 30, subsample_factor)) nr_frames_subsampled = 30 / subsample_factor # PREPROCESS FRAMES SEPERATELY l0_frames = nn.layers.ReshapeLayer(l0_slices_subsampled, (batch_size * nr_slices * nr_frames_subsampled, 1, patch_px, patch_px)) # (bxsxt, 1, i, j) l1a = nn.layers.dnn.Conv2DDNNLayer(l0_frames, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=16, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l1b = nn.layers.dnn.Conv2DDNNLayer(l1a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=16, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l1c = nn.layers.dnn.Conv2DDNNLayer(l1b, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=16, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l1 = nn.layers.dnn.MaxPool2DDNNLayer(l1c, pool_size=(2,2), stride=(2,2)) l2a = nn.layers.dnn.Conv2DDNNLayer(l1, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=32, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l2b = nn.layers.dnn.Conv2DDNNLayer(l2a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=32, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l2c = nn.layers.dnn.Conv2DDNNLayer(l2b, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=32, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l2 = nn.layers.dnn.MaxPool2DDNNLayer(l2c, pool_size=(2,2), stride=(2,2)) l3a = nn.layers.dnn.Conv2DDNNLayer(l2, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=64, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l3b = nn.layers.dnn.Conv2DDNNLayer(l3a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=64, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l3c = nn.layers.dnn.Conv2DDNNLayer(l3b, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=64, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l3d = nn.layers.dnn.Conv2DDNNLayer(l3c, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=64, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l3 = nn.layers.dnn.MaxPool2DDNNLayer(l3d, pool_size=(2,2), stride=(2,2)) l4a = nn.layers.dnn.Conv2DDNNLayer(l3, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l4b = nn.layers.dnn.Conv2DDNNLayer(l4a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l4c = nn.layers.dnn.Conv2DDNNLayer(l4b, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l4d = nn.layers.dnn.Conv2DDNNLayer(l4c, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l4 = nn.layers.dnn.MaxPool2DDNNLayer(l4d, pool_size=(2,2), stride=(2,2)) l5a = nn.layers.dnn.Conv2DDNNLayer(l4, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l5b = nn.layers.dnn.Conv2DDNNLayer(l5a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l5c = nn.layers.dnn.Conv2DDNNLayer(l5b, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l5d = nn.layers.dnn.Conv2DDNNLayer(l5c, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify) l5 = nn.layers.dnn.MaxPool2DDNNLayer(l5d, pool_size=(2,2), stride=(2,2)) l5drop = nn.layers.dropout(l5, p=0.5) ld1 = nn.layers.DenseLayer(l5drop, num_units=256, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) ld1drop = nn.layers.dropout(ld1, p=0.5) ld2 = nn.layers.DenseLayer(ld1drop, num_units=256, W=nn.init.Orthogonal("relu"),b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) ld2drop = nn.layers.dropout(ld2, p=0.5) ld3mu = nn.layers.DenseLayer(ld2drop, num_units=1, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(15.0), nonlinearity=None) ld3sigma = nn.layers.DenseLayer(ld2drop, num_units=1, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(5.0), nonlinearity=lb_softplus(.3)) ld3musigma = nn.layers.ConcatLayer([ld3mu, ld3sigma], axis=1) # Go back to a per slice model l_slices_musigma = nn.layers.ReshapeLayer(ld3musigma, (batch_size * nr_slices, nr_frames_subsampled, 2)) # (bxs, t, 2) l_slices_musigma_sys = layers.ArgmaxAndMaxLayer(l_slices_musigma, mode='min') # (bxs, 2) l_slices_musigma_dia = layers.ArgmaxAndMaxLayer(l_slices_musigma, mode='max') # (bxs, 2) # AGGREGATE SLICES PER PATIENT l_scaled_slice_locations = layers.TrainableScaleLayer(lin_slice_locations, scale=nn.init.Constant(0.1), trainable=False) # Systole l_pat_sys_ss_musigma = nn.layers.ReshapeLayer(l_slices_musigma_sys, (batch_size, nr_slices, 2)) l_pat_sys_ss_mu = nn.layers.SliceLayer(l_pat_sys_ss_musigma, indices=0, axis=-1) l_pat_sys_ss_sigma = nn.layers.SliceLayer(l_pat_sys_ss_musigma, indices=1, axis=-1) l_pat_sys_aggr_mu_sigma = layers.JeroenLayer([l_pat_sys_ss_mu, l_pat_sys_ss_sigma, lin_slice_mask, l_scaled_slice_locations], rescale_input=1.) l_systole = layers.MuSigmaErfLayer(l_pat_sys_aggr_mu_sigma) # Diastole l_pat_dia_ss_musigma = nn.layers.ReshapeLayer(l_slices_musigma_dia, (batch_size, nr_slices, 2)) l_pat_dia_ss_mu = nn.layers.SliceLayer(l_pat_dia_ss_musigma, indices=0, axis=-1) l_pat_dia_ss_sigma = nn.layers.SliceLayer(l_pat_dia_ss_musigma, indices=1, axis=-1) l_pat_dia_aggr_mu_sigma = layers.JeroenLayer([l_pat_dia_ss_mu, l_pat_dia_ss_sigma, lin_slice_mask, l_scaled_slice_locations], rescale_input=1.) l_diastole = layers.MuSigmaErfLayer(l_pat_dia_aggr_mu_sigma) return { "inputs":{ "sliced:data:sax": l0, "sliced:data:sax:is_not_padded": lin_slice_mask, "sliced:data:sax:locations": lin_slice_locations, }, "outputs": { "systole": l_systole, "diastole": l_diastole, }, "regularizable": { }, }
def build_model(): ################# # Regular model # ################# input_size = data_sizes["sliced:data:sax"] input_size_mask = data_sizes["sliced:data:sax:is_not_padded"] input_size_locations = data_sizes["sliced:data:sax:locations"] l0 = nn.layers.InputLayer(input_size) lin_slice_mask = nn.layers.InputLayer(input_size_mask) lin_slice_locations = nn.layers.InputLayer(input_size_locations) # PREPROCESS SLICES SEPERATELY # Convolutional layers and some dense layers are defined in a submodel l0_slices = nn.layers.ReshapeLayer(l0, (-1, [2], [3], [4])) l1a = nn.layers.dnn.Conv2DDNNLayer(l0_slices, W=nn.init.Orthogonal("relu"), filter_size=(3, 3), num_filters=64, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) l1b = nn.layers.dnn.Conv2DDNNLayer(l1a, W=nn.init.Orthogonal("relu"), filter_size=(3, 3), num_filters=64, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) l1 = nn.layers.dnn.MaxPool2DDNNLayer(l1b, pool_size=(2, 2), stride=(2, 2)) l2a = nn.layers.dnn.Conv2DDNNLayer(l1, W=nn.init.Orthogonal("relu"), filter_size=(3, 3), num_filters=128, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) l2b = nn.layers.dnn.Conv2DDNNLayer(l2a, W=nn.init.Orthogonal("relu"), filter_size=(3, 3), num_filters=128, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) l2 = nn.layers.dnn.MaxPool2DDNNLayer(l2b, pool_size=(2, 2), stride=(2, 2)) l3a = nn.layers.dnn.Conv2DDNNLayer(l2, W=nn.init.Orthogonal("relu"), filter_size=(3, 3), num_filters=256, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) l3b = nn.layers.dnn.Conv2DDNNLayer(l3a, W=nn.init.Orthogonal("relu"), filter_size=(3, 3), num_filters=256, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) l3c = nn.layers.dnn.Conv2DDNNLayer(l3b, W=nn.init.Orthogonal("relu"), filter_size=(3, 3), num_filters=256, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) l3 = nn.layers.dnn.MaxPool2DDNNLayer(l3c, pool_size=(2, 2), stride=(2, 2)) l4a = nn.layers.dnn.Conv2DDNNLayer(l3, W=nn.init.Orthogonal("relu"), filter_size=(3, 3), num_filters=512, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) l4b = nn.layers.dnn.Conv2DDNNLayer(l4a, W=nn.init.Orthogonal("relu"), filter_size=(3, 3), num_filters=512, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) l4c = nn.layers.dnn.Conv2DDNNLayer(l4b, W=nn.init.Orthogonal("relu"), filter_size=(3, 3), num_filters=512, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) l4 = nn.layers.dnn.MaxPool2DDNNLayer(l4c, pool_size=(2, 2), stride=(2, 2)) l5a = nn.layers.dnn.Conv2DDNNLayer(l4, W=nn.init.Orthogonal("relu"), filter_size=(3, 3), num_filters=512, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) l5b = nn.layers.dnn.Conv2DDNNLayer(l5a, W=nn.init.Orthogonal("relu"), filter_size=(3, 3), num_filters=512, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) l5c = nn.layers.dnn.Conv2DDNNLayer(l5b, W=nn.init.Orthogonal("relu"), filter_size=(3, 3), num_filters=512, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) l5 = nn.layers.dnn.MaxPool2DDNNLayer(l5c, pool_size=(2, 2), stride=(2, 2)) # Systole Dense layers ldsys1 = nn.layers.DenseLayer(l5, num_units=512, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) ldsys1drop = nn.layers.dropout(ldsys1, p=0.5) ldsys2 = nn.layers.DenseLayer(ldsys1drop, num_units=512, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) ldsys2drop = nn.layers.dropout(ldsys2, p=0.5) l_sys_mu = nn.layers.DenseLayer(ldsys2drop, num_units=1, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(10.0), nonlinearity=None) l_sys_sigma = nn.layers.DenseLayer(ldsys2drop, num_units=1, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(3.), nonlinearity=lb_softplus(.1)) # Diastole Dense layers lddia1 = nn.layers.DenseLayer(l5, num_units=512, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) lddia1drop = nn.layers.dropout(lddia1, p=0.5) lddia2 = nn.layers.DenseLayer(lddia1drop, num_units=512, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) lddia2drop = nn.layers.dropout(lddia2, p=0.5) l_dia_mu = nn.layers.DenseLayer(lddia2drop, num_units=1, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(10.0), nonlinearity=None) l_dia_sigma = nn.layers.DenseLayer(lddia2drop, num_units=1, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(3.), nonlinearity=lb_softplus(.1)) # AGGREGATE SLICES PER PATIENT l_scaled_slice_locations = layers.TrainableScaleLayer( lin_slice_locations, scale=nn.init.Constant(0.1), trainable=False) # Systole l_pat_sys_ss_mu = nn.layers.ReshapeLayer(l_sys_mu, (-1, nr_slices)) l_pat_sys_ss_sigma = nn.layers.ReshapeLayer(l_sys_sigma, (-1, nr_slices)) l_pat_sys_aggr_mu_sigma = layers.JeroenLayer([ l_pat_sys_ss_mu, l_pat_sys_ss_sigma, lin_slice_mask, l_scaled_slice_locations ], rescale_input=1.) l_systole = layers.MuSigmaErfLayer(l_pat_sys_aggr_mu_sigma) # Diastole l_pat_dia_ss_mu = nn.layers.ReshapeLayer(l_dia_mu, (-1, nr_slices)) l_pat_dia_ss_sigma = nn.layers.ReshapeLayer(l_dia_sigma, (-1, nr_slices)) l_pat_dia_aggr_mu_sigma = layers.JeroenLayer([ l_pat_dia_ss_mu, l_pat_dia_ss_sigma, lin_slice_mask, l_scaled_slice_locations ], rescale_input=1.) l_diastole = layers.MuSigmaErfLayer(l_pat_dia_aggr_mu_sigma) return { "inputs": { "sliced:data:sax": l0, "sliced:data:sax:is_not_padded": lin_slice_mask, "sliced:data:sax:locations": lin_slice_locations, }, "outputs": { "systole": l_systole, "diastole": l_diastole, }, "regularizable": { ldsys1: l2_weight, ldsys2: l2_weight, l_sys_mu: l2_weight_out, l_sys_sigma: l2_weight_out, lddia1: l2_weight, lddia2: l2_weight, l_dia_mu: l2_weight_out, l_dia_sigma: l2_weight_out, }, }
def build_model(): ################# # Regular model # ################# input_size = data_sizes["sliced:data:sax"] input_size_mask = data_sizes["sliced:data:sax:is_not_padded"] input_size_locations = data_sizes["sliced:data:sax:locations"] l0 = nn.layers.InputLayer(input_size) lin_slice_mask = nn.layers.InputLayer(input_size_mask) lin_slice_locations = nn.layers.InputLayer(input_size_locations) # PREPROCESS SLICES SEPERATELY l0_slices = nn.layers.ReshapeLayer( l0, (batch_size * nr_slices, 30, patch_px, patch_px)) # (bxs, t, i, j) subsample_factor = 2 l0_slices_subsampled = nn.layers.SliceLayer(l0_slices, axis=1, indices=slice( 0, 30, subsample_factor)) nr_frames_subsampled = 30 / subsample_factor # PREPROCESS FRAMES SEPERATELY l0_frames = nn.layers.ReshapeLayer( l0_slices_subsampled, (batch_size * nr_slices * nr_frames_subsampled, 1, patch_px, patch_px)) # (bxsxt, 1, i, j) # downsample downsample = lambda incoming: nn.layers.dnn.Pool2DDNNLayer( incoming, pool_size=(2, 2), stride=(2, 2), mode='average_inc_pad') upsample = lambda incoming: nn.layers.Upscale2DLayer(incoming, scale_factor=2) l0_frames_d0 = l0_frames l0_frames_d1 = downsample(l0_frames_d0) l0_frames_d2 = downsample(l0_frames_d1) l0_frames_d3 = downsample(l0_frames_d2) ld3a = nn.layers.dnn.Conv2DDNNLayer(l0_frames_d3, W=nn.init.Orthogonal("relu"), filter_size=(3, 3), num_filters=16, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) ld3b = nn.layers.dnn.Conv2DDNNLayer(ld3a, W=nn.init.Orthogonal("relu"), filter_size=(3, 3), num_filters=16, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) ld3c = nn.layers.dnn.Conv2DDNNLayer(ld3b, W=nn.init.Orthogonal("relu"), filter_size=(3, 3), num_filters=16, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) ld3o = nn.layers.dnn.Conv2DDNNLayer(ld3c, W=nn.init.Orthogonal("relu"), filter_size=(3, 3), num_filters=16, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) ld2i = nn.layers.ConcatLayer([l0_frames_d2, upsample(ld3o)], axis=1) ld2a = nn.layers.dnn.Conv2DDNNLayer(ld2i, W=nn.init.Orthogonal("relu"), filter_size=(5, 5), num_filters=32, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) ld2b = nn.layers.dnn.Conv2DDNNLayer(ld2a, W=nn.init.Orthogonal("relu"), filter_size=(5, 5), num_filters=32, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) ld2c = nn.layers.dnn.Conv2DDNNLayer(ld2b, W=nn.init.Orthogonal("relu"), filter_size=(5, 5), num_filters=32, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) ld2d = nn.layers.dnn.Conv2DDNNLayer(ld2c, W=nn.init.Orthogonal("relu"), filter_size=(5, 5), num_filters=32, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) ld2o = nn.layers.dnn.Conv2DDNNLayer(ld2d, W=nn.init.Orthogonal("relu"), filter_size=(5, 5), num_filters=32, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) ld1i = nn.layers.ConcatLayer([l0_frames_d1, upsample(ld2o)], axis=1) ld1a = nn.layers.dnn.Conv2DDNNLayer(ld1i, W=nn.init.Orthogonal("relu"), filter_size=(5, 5), num_filters=32, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) ld1b = nn.layers.dnn.Conv2DDNNLayer(ld1a, W=nn.init.Orthogonal("relu"), filter_size=(5, 5), num_filters=32, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) ld1c = nn.layers.dnn.Conv2DDNNLayer(ld1b, W=nn.init.Orthogonal("relu"), filter_size=(5, 5), num_filters=32, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) ld1d = nn.layers.dnn.Conv2DDNNLayer(ld1c, W=nn.init.Orthogonal("relu"), filter_size=(5, 5), num_filters=32, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) ld1o = nn.layers.dnn.Conv2DDNNLayer(ld1d, W=nn.init.Orthogonal("relu"), filter_size=(5, 5), num_filters=32, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) ld0i = nn.layers.ConcatLayer([l0_frames_d0, upsample(ld1o)], axis=1) ld0a = nn.layers.dnn.Conv2DDNNLayer(ld0i, W=nn.init.Orthogonal("relu"), filter_size=(5, 5), num_filters=32, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) ld0b = nn.layers.dnn.Conv2DDNNLayer(ld0a, W=nn.init.Orthogonal("relu"), filter_size=(5, 5), num_filters=32, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) ld0c = nn.layers.dnn.Conv2DDNNLayer(ld0b, W=nn.init.Orthogonal("relu"), filter_size=(5, 5), num_filters=32, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) ld0d = nn.layers.dnn.Conv2DDNNLayer(ld0c, W=nn.init.Orthogonal("relu"), filter_size=(5, 5), num_filters=32, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.rectify) ld0o = nn.layers.dnn.Conv2DDNNLayer(ld0d, W=nn.init.Orthogonal("relu"), filter_size=(5, 5), num_filters=1, stride=(1, 1), pad="same", nonlinearity=nn.nonlinearities.sigmoid) ld0r = nn.layers.ReshapeLayer( ld0o, (batch_size * nr_slices * nr_frames_subsampled, patch_px, patch_px)) l_frames_musigma = layers.IntegrateAreaLayer(ld0r, sigma_mode='scale', sigma_scale=.1) area_per_pixel_cm = (float(patch_mm) / float(patch_px))**2 / 100.0 l_frames_musigma_cm = layers.TrainableScaleLayer( l_frames_musigma, scale=nn.init.Constant(area_per_pixel_cm), trainable=False) # Go back to a per slice model l_slices_musigma_cm = nn.layers.ReshapeLayer( l_frames_musigma_cm, (batch_size * nr_slices, nr_frames_subsampled, 2)) # (bxs, t, 2) l_slices_musigma_cm_sys = layers.ArgmaxAndMaxLayer(l_slices_musigma_cm, mode='min') # (bxs, 2) l_slices_musigma_cm_dia = layers.ArgmaxAndMaxLayer(l_slices_musigma_cm, mode='max') # (bxs, 2) l_slices_musigma_cm_avg = layers.ArgmaxAndMaxLayer(l_slices_musigma_cm, mode='mean') # AGGREGATE SLICES PER PATIENT l_scaled_slice_locations = layers.TrainableScaleLayer( lin_slice_locations, scale=nn.init.Constant(0.1), trainable=False) # Systole l_pat_sys_ss_musigma_cm = nn.layers.ReshapeLayer( l_slices_musigma_cm_sys, (batch_size, nr_slices, 2)) l_pat_sys_ss_mu_cm = nn.layers.SliceLayer(l_pat_sys_ss_musigma_cm, indices=0, axis=-1) l_pat_sys_ss_sigma_cm = nn.layers.SliceLayer(l_pat_sys_ss_musigma_cm, indices=1, axis=-1) l_pat_sys_ss_sigma_cm = nn.layers.TrainableScaleLayer( l_pat_sys_ss_sigma_cm) l_pat_sys_aggr_mu_sigma = layers.JeroenLayer([ l_pat_sys_ss_mu_cm, l_pat_sys_ss_sigma_cm, lin_slice_mask, l_scaled_slice_locations ], rescale_input=1.) l_systole = layers.MuSigmaErfLayer(l_pat_sys_aggr_mu_sigma) # Diastole l_pat_dia_ss_musigma_cm = nn.layers.ReshapeLayer( l_slices_musigma_cm_dia, (batch_size, nr_slices, 2)) l_pat_dia_ss_mu_cm = nn.layers.SliceLayer(l_pat_dia_ss_musigma_cm, indices=0, axis=-1) l_pat_dia_ss_sigma_cm = nn.layers.SliceLayer(l_pat_dia_ss_musigma_cm, indices=1, axis=-1) l_pat_dia_ss_sigma_cm = nn.layers.TrainableScaleLayer( l_pat_dia_ss_sigma_cm) l_pat_dia_aggr_mu_sigma = layers.JeroenLayer([ l_pat_dia_ss_mu_cm, l_pat_dia_ss_sigma_cm, lin_slice_mask, l_scaled_slice_locations ], rescale_input=1.) l_diastole = layers.MuSigmaErfLayer(l_pat_dia_aggr_mu_sigma) # Average l_pat_avg_ss_musigma_cm = nn.layers.ReshapeLayer( l_slices_musigma_cm_avg, (batch_size, nr_slices, 2)) l_pat_avg_ss_mu_cm = nn.layers.SliceLayer(l_pat_avg_ss_musigma_cm, indices=0, axis=-1) l_pat_avg_ss_sigma_cm = nn.layers.SliceLayer(l_pat_avg_ss_musigma_cm, indices=1, axis=-1) l_pat_avg_aggr_mu_sigma = layers.JeroenLayer([ l_pat_avg_ss_mu_cm, l_pat_avg_ss_sigma_cm, lin_slice_mask, l_scaled_slice_locations ], rescale_input=1.) l_mean = layers.MuSigmaErfLayer(l_pat_avg_aggr_mu_sigma) return { "inputs": { "sliced:data:sax": l0, "sliced:data:sax:is_not_padded": lin_slice_mask, "sliced:data:sax:locations": lin_slice_locations, }, "outputs": { "systole": l_systole, "diastole": l_diastole, "average": l_mean, }, "regularizable": {}, }
def build_model(): import j6_2ch_gauss, j6_4ch_gauss meta_2ch = j6_2ch_gauss.build_model() meta_4ch = j6_4ch_gauss.build_model() l_meta_2ch_systole = nn.layers.DenseLayer( meta_2ch["meta_outputs"]["systole"], num_units=64, W=nn.init.Orthogonal(), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) l_meta_2ch_diastole = nn.layers.DenseLayer( meta_2ch["meta_outputs"]["diastole"], num_units=64, W=nn.init.Orthogonal(), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) l_meta_4ch_systole = nn.layers.DenseLayer( meta_4ch["meta_outputs"]["systole"], num_units=64, W=nn.init.Orthogonal(), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) l_meta_4ch_diastole = nn.layers.DenseLayer( meta_4ch["meta_outputs"]["diastole"], num_units=64, W=nn.init.Orthogonal(), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) ################# # Regular model # ################# input_size = data_sizes["sliced:data:sax"] input_size_mask = data_sizes["sliced:data:sax:is_not_padded"] input_size_locations = data_sizes["sliced:data:sax:locations"] l0 = nn.layers.InputLayer(input_size) lin_slice_mask = nn.layers.InputLayer(input_size_mask) lin_slice_locations = nn.layers.InputLayer(input_size_locations) # PREPROCESS SLICES SEPERATELY # Convolutional layers and some dense layers are defined in a submodel l0_slices = nn.layers.ReshapeLayer(l0, (-1, [2], [3], [4])) import je_ss_jonisc64small_360_gauss_longer submodel = je_ss_jonisc64small_360_gauss_longer.build_model(l0_slices) # Systole Dense layers l_sys_mu = submodel["meta_outputs"]["systole:mu"] l_sys_sigma = submodel["meta_outputs"]["systole:sigma"] l_sys_meta = submodel["meta_outputs"]["systole"] # Diastole Dense layers l_dia_mu = submodel["meta_outputs"]["diastole:mu"] l_dia_sigma = submodel["meta_outputs"]["diastole:sigma"] l_dia_meta = submodel["meta_outputs"]["diastole"] # AGGREGATE SLICES PER PATIENT l_scaled_slice_locations = layers.TrainableScaleLayer( lin_slice_locations, scale=nn.init.Constant(0.1), trainable=False) # Systole l_pat_sys_ss_mu = nn.layers.ReshapeLayer(l_sys_mu, (-1, nr_slices)) l_pat_sys_ss_sigma = nn.layers.ReshapeLayer(l_sys_sigma, (-1, nr_slices)) l_pat_sys_aggr_mu_sigma = layers.JeroenLayer([ l_pat_sys_ss_mu, l_pat_sys_ss_sigma, lin_slice_mask, l_scaled_slice_locations ], rescale_input=100.) l_systole = layers.MuSigmaErfLayer(l_pat_sys_aggr_mu_sigma) l_sys_meta = nn.layers.DenseLayer(nn.layers.ReshapeLayer( l_sys_meta, (-1, nr_slices, 512)), num_units=64, W=nn.init.Orthogonal(), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) l_meta_systole = nn.layers.ConcatLayer( [l_meta_2ch_systole, l_meta_4ch_systole, l_sys_meta]) l_weights = nn.layers.DenseLayer(l_meta_systole, num_units=512, W=nn.init.Orthogonal(), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) l_weights = nn.layers.DenseLayer(l_weights, num_units=3, W=nn.init.Orthogonal(), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) systole_output = layers.WeightedMeanLayer(l_weights, [ l_systole, meta_2ch["outputs"]["systole"], meta_4ch["outputs"]["systole"] ]) # Diastole l_pat_dia_ss_mu = nn.layers.ReshapeLayer(l_dia_mu, (-1, nr_slices)) l_pat_dia_ss_sigma = nn.layers.ReshapeLayer(l_dia_sigma, (-1, nr_slices)) l_pat_dia_aggr_mu_sigma = layers.JeroenLayer([ l_pat_dia_ss_mu, l_pat_dia_ss_sigma, lin_slice_mask, l_scaled_slice_locations ], rescale_input=100.) l_diastole = layers.MuSigmaErfLayer(l_pat_dia_aggr_mu_sigma) l_dia_meta = nn.layers.DenseLayer(nn.layers.ReshapeLayer( l_dia_meta, (-1, nr_slices, 512)), num_units=64, W=nn.init.Orthogonal(), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) l_meta_diastole = nn.layers.ConcatLayer( [l_meta_2ch_diastole, l_meta_4ch_diastole, l_dia_meta]) l_weights = nn.layers.DenseLayer(l_meta_diastole, num_units=512, W=nn.init.Orthogonal(), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify) l_weights = nn.layers.DenseLayer(l_weights, num_units=3, W=nn.init.Orthogonal(), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.identity) diastole_output = layers.WeightedMeanLayer(l_weights, [ l_diastole, meta_2ch["outputs"]["diastole"], meta_4ch["outputs"]["diastole"] ]) submodels = [submodel, meta_2ch, meta_4ch] return { "inputs": dict( { "sliced:data:sax": l0, "sliced:data:sax:is_not_padded": lin_slice_mask, "sliced:data:sax:locations": lin_slice_locations, }, **{ k: v for d in [model["inputs"] for model in [meta_2ch, meta_4ch]] for k, v in d.items() }), "outputs": { "systole": systole_output, "diastole": diastole_output, }, "regularizable": dict({}, **{ k: v for d in [ model["regularizable"] for model in submodels if "regularizable" in model ] for k, v in d.items() }), "pretrained": { je_ss_jonisc64small_360_gauss_longer.__name__: submodel["outputs"], j6_2ch_gauss.__name__: meta_2ch["outputs"], j6_4ch_gauss.__name__: meta_4ch["outputs"], }, #"cutoff_gradients": [ #] + [ v for d in [model["meta_outputs"] for model in [meta_2ch, meta_4ch] if "meta_outputs" in model] # for v in d.values() ] }