def model_fn_sparse(features, labels, mode, params): # hyper parameter data_params = params['data_params'] field_size = data_params['field_size'] feature_size = data_params['feature_size'] embedding_size = data_params['embedding_size'] # extract feature feat_ids = tf.reshape(features['feat_ids'], shape=[-1, field_size]) # batch * field_size feat_vals = tf.reshape(features['feat_vals'], shape=[-1, field_size]) # batch * field_size # extract embedding with tf.variable_scope('extract_embedding'): embedding_matrix = sparse_embedding( feature_size, embedding_size, field_size, feat_ids, feat_vals, add_summary=True) # (batch, field_size, embedding_size) dense_input = tf.reshape(embedding_matrix, [-1, field_size * embedding_size ]) # (batch, field_size * embedding_size) # linear part linear_output = sparse_linear(feature_size, feat_ids, feat_vals, add_summary=True) # Deep part dense_output = stack_dense_layer(dense_input, params['hidden_units'], params['dropout_rate'], params['batch_norm'], mode, add_summary=True) # CIN part cin_output = cin_layer(embedding_matrix, params['cin_layer_size'], embedding_size, field_size) # concat and output with tf.variable_scope('output'): y = tf.concat([dense_output, cin_output, linear_output], axis=1) y = tf.layers.dense(y, units=1) add_layer_summary('output', y) return y
def model_fn_sparse(features, labels, mode, params): # hyper parameter data_params = params['data_params'] field_size = data_params['field_size'] feature_size = data_params['feature_size'] embedding_size = data_params['embedding_size'] # extract feature feat_ids = tf.reshape(features['feat_ids'], shape=[-1, field_size]) # batch * field_size feat_vals = tf.reshape(features['feat_vals'], shape=[-1, field_size]) # batch * field_size # extract embedding embedding_matrix = sparse_embedding(feature_size, embedding_size, field_size, feat_ids, feat_vals, add_summary=True) # linear output linear_output = sparse_linear(feature_size, feat_ids, feat_vals, add_summary=True) with tf.variable_scope('BI_Pooling'): sum_square = tf.pow(tf.reduce_sum(embedding_matrix, axis=1), 2) square_sum = tf.reduce_sum(tf.pow(embedding_matrix, 2), axis=1) dense = tf.subtract(sum_square, square_sum) add_layer_summary(dense.name, dense) # fully connected stacked dense layers dense = stack_dense_layer(dense, params['hidden_units'], dropout_rate=params['dropout_rate'], batch_norm=params['batch_norm'], mode=mode, add_summary=True) with tf.variable_scope('output'): y = linear_output + dense add_layer_summary('output', y) return y
def model_fn_sparse(features, labels, mode, params): # hyper parameter data_params = params['data_params'] field_size = data_params['field_size'] feature_size = data_params['feature_size'] embedding_size = data_params['embedding_size'] # extract feature feat_ids = tf.reshape(features['feat_ids'], shape=[-1, field_size]) # batch * field_size feat_vals = tf.reshape(features['feat_vals'], shape=[-1, field_size]) # batch * field_size # extract embedding embedding_matrix = sparse_embedding(feature_size, embedding_size, field_size, feat_ids, feat_vals, add_summary=True) # linear output linear_output = sparse_linear(feature_size, feat_ids, feat_vals, add_summary=True) with tf.variable_scope('Elementwise_Interaction'): elementwise_list = [] for i in range(field_size): for j in range(i + 1, field_size): vi = tf.gather(embedding_matrix, indices=i, axis=1, batch_dims=0, name='vi') # batch * emb_size vj = tf.gather(embedding_matrix, indices=j, axis=1, batch_dims=0, name='vj') elementwise_list.append(tf.multiply(vi, vj)) # batch * emb_size elementwise_matrix = tf.stack( elementwise_list) # (N*(N-1)/2) * batch * emb_size elementwise_matrix = tf.transpose( elementwise_matrix, [1, 0, 2]) # batch * (N*(N-1)/2) * emb_size with tf.variable_scope('Attention_Net'): # 2 fully connected layer dense = tf.layers.dense(elementwise_matrix, units=params['attention_factor'], activation='relu') # batch * (N*(N-1)/2) * t add_layer_summary(dense.name, dense) attention_weight = tf.layers.dense( dense, units=1, activation='softmax') # batch *(N*(N-1)/2) * 1 add_layer_summary(attention_weight.name, attention_weight) with tf.variable_scope('Attention_pooling'): interaction_output = tf.reduce_sum(tf.multiply(elementwise_matrix, attention_weight), axis=1) # batch * k interaction_output = tf.layers.dense(interaction_output, units=1) # batch * 1 with tf.variable_scope('output'): y = interaction_output + linear_output add_layer_summary('output', y) return y
def model_fn_sparse(features, labels, mode, params): # hyper parameter data_params = params['data_params'] field_size = data_params['field_size'] feature_size = data_params['feature_size'] embedding_size = data_params['embedding_size'] # extract feature feat_ids = tf.reshape(features['feat_ids'], shape=[-1, field_size]) # batch * field_size feat_vals = tf.reshape(features['feat_vals'], shape=[-1, field_size]) # batch * field_size # extract embedding with tf.variable_scope('extract_embedding'): embedding_matrix = sparse_embedding( feature_size, embedding_size, field_size, feat_ids, feat_vals, add_summary=True) # (batch, field_size, embedding_size) # linear part linear_output = sparse_linear(feature_size, feat_ids, feat_vals, add_summary=True) # SENET_layer to get new embedding matrix senet_embedding_matrix = SENET_layer(embedding_matrix, field_size, embedding_size, pool_op=params['pool_op'], ratio=params['senet_ratio']) # combination layer & BI_interaction BI_org = Bilinear_layer(embedding_matrix, field_size, embedding_size, type=params['model_type'], name='org') BI_senet = Bilinear_layer(senet_embedding_matrix, field_size, embedding_size, type=params['model_type'], name='senet') combination_layer = tf.concat([BI_org, BI_senet], axis=1) # Deep part dense_output = stack_dense_layer(combination_layer, params['hidden_units'], params['dropout_rate'], params['batch_norm'], mode, add_summary=True) with tf.variable_scope('output'): y = dense_output + linear_output add_layer_summary('output', y) return y