def build_model(self): if self.verbose: print 'Customized MLP' # start graph construction from scratch self.x = T.ftensor4('x') self.y = T.lvector('y') x_shuffled = self.x.dimshuffle(3, 0, 1, 2) # c01b to bc01 # bc01 from now on flatten = Flatten( input=x_shuffled, #5 input_shape=(self.batch_size, self.channels, self.input_width, self.input_height), # (b, 3, 224, 224) axis=2, # expand dimensions after the first dimension printinfo=self.verbose #output_shape = (b,64*64*3) ) fc_4096 = FC(input=flatten, n_out=4096, W=Normal((flatten.output_shape[1], 4096), std=0.001), b=Constant((4096, ), val=0.01), printinfo=self.verbose #input_shape = flatten.output_shape # (b, 9216) ) dropout = Dropout(input=fc_4096, n_out=fc_4096.output_shape[1], prob_drop=0.5, printinfo=self.verbose #input_shape = fc_4096.output_shape # (b, 4096) ) fc_4096 = FC(input=dropout, n_out=4096, W=Normal((dropout.output_shape[1], 4096), std=0.005), b=Constant((4096, ), val=0.01), printinfo=self.verbose #input_shape = dropout.output_shape # (b, 4096) ) dropout = Dropout(input=fc_4096, n_out=fc_4096.output_shape[1], prob_drop=0.5, printinfo=self.verbose #input_shape = fc_4096.output_shape # (b, 4096) ) softmax = Softmax(input=dropout, n_out=self.n_softmax_out, W=Normal( (dropout.output_shape[1], self.n_softmax_out), std=0.005), b=Constant((self.n_softmax_out, ), val=0), printinfo=self.verbose #input_shape = dropout.output_shape # (b, 4096) ) self.output_layer = softmax
def set_dropout_on(self): Dropout.SetDropoutOn()
def set_dropout_off(self): Dropout.SetDropoutOff()
def build_model(self): if self.verbose: print 'VGGNet_16 3/20' self.name = 'vggnet' # input shape in c01b self.channels = 3 # 'c' mean(R,G,B) = (103.939, 116.779, 123.68) self.input_width = self.config[ 'input_width'] # '0' single scale training 224 self.input_height = self.config[ 'input_height'] # '1' single scale training 224 self.batch_size = self.config['batch_size'] # 'b' b = self.batch_size # output dimension self.n_softmax_out = self.config['n_softmax_out'] # start graph construction from scratch self.x = T.ftensor4('x') self.y = T.lvector('y') x_shuffled = self.x.dimshuffle(3, 0, 1, 2) # c01b to bc01 layers = [] params = [] weight_types = [] # for distinguishing w and b later # bc01 from now on conv_3x3 = Conv( input=x_shuffled, input_shape=(b, self.channels, self.input_width, self.input_height), # (b, 3, 224, 224) convstride=1, padsize=1, W=Normal((64, self.channels, 3, 3), std=0.3), # bc01 b=Constant((64, ), val=0.2), printinfo=self.verbose #output_shape = (b, 64, 224, 224) ) conv_3x3 = Conv( input=conv_3x3, #input_shape=pool_2x2.output_shape, # (b, 64, 112, 112) convstride=1, padsize=1, W=Normal((64, conv_3x3.output_shape[1], 3, 3), std=0.1), # bc01 b=Constant((64, ), val=0.1), printinfo=self.verbose #output_shape = (b, 128, 112, 112) ) pool_2x2 = Pool( input=conv_3x3, #input_shape=conv_3x3.output_shape, # (b, 64, 224, 224) poolsize=2, poolstride=2, poolpad=0, mode='max', printinfo=self.verbose #output_shape = (b, 64, 112, 112) ) conv_3x3 = Conv( input=pool_2x2, #input_shape=pool_2x2.output_shape, # (b, 64, 112, 112) convstride=1, padsize=1, W=Normal((128, pool_2x2.output_shape[1], 3, 3), std=0.1), # bc01 b=Constant((128, ), val=0.02), printinfo=self.verbose #output_shape = (b, 128, 112, 112) ) conv_3x3 = Conv( input=conv_3x3, #input_shape=pool_2x2.output_shape, # (b, 64, 112, 112) convstride=1, padsize=1, W=Normal((128, conv_3x3.output_shape[1], 3, 3), std=0.1), # bc01 b=Constant((128, ), val=0.02), printinfo=self.verbose #output_shape = (b, 128, 112, 112) ) pool_2x2 = Pool( input=conv_3x3, #input_shape=conv_3x3.output_shape, # (b, 128, 112, 112) poolsize=2, poolstride=2, poolpad=0, mode='max', printinfo=self.verbose #output_shape = (b, 128, 56, 56) ) conv_3x3 = Conv( input=pool_2x2, #input_shape=pool_2x2.output_shape, # (b, 128, 56, 56) convstride=1, padsize=1, W=Normal((256, pool_2x2.output_shape[1], 3, 3), std=0.05), # bc01 b=Constant((256, ), val=0.02), printinfo=self.verbose #output_shape = (b, 256, 56, 56) ) conv_3x3 = Conv( input=conv_3x3, #input_shape=conv_3x3.output_shape, # (b, 256, 56, 56) convstride=1, padsize=1, W=Normal((256, conv_3x3.output_shape[1], 3, 3), std=0.05), # bc01 b=Constant((256, ), val=0.01), printinfo=self.verbose #output_shape = (b, 256, 56, 56) ) conv_3x3 = Conv( input=conv_3x3, #input_shape=conv_3x3.output_shape, # (b, 256, 56, 56) convstride=1, padsize=1, W=Normal((256, conv_3x3.output_shape[1], 3, 3), std=0.05), # bc01 b=Constant((256, ), val=0.01), printinfo=self.verbose #output_shape = (b, 256, 56, 56) ) pool_2x2 = Pool( input=conv_3x3, #input_shape=conv_3x3.output_shape, # (b, 256, 56, 56) poolsize=2, poolstride=2, poolpad=0, mode='max', printinfo=self.verbose #output_shape = (b, 256, 28, 28) ) conv_3x3 = Conv( input=pool_2x2, #input_shape=pool_2x2.output_shape, # (b, 256, 28, 28) convstride=1, padsize=1, W=Normal((512, pool_2x2.output_shape[1], 3, 3), std=0.05), # bc01 b=Constant((512, ), val=0.02), printinfo=self.verbose #output_shape = (b, 512, 28, 28) ) conv_3x3 = Conv( input=conv_3x3, #input_shape=conv_3x3.output_shape, # (b, 512, 28, 28) convstride=1, padsize=1, W=Normal((512, conv_3x3.output_shape[1], 3, 3), std=0.01), # bc01 b=Constant((512, ), val=0.01), printinfo=self.verbose #output_shape = (b, 512, 28, 28) ) conv_3x3 = Conv( input=conv_3x3, #input_shape=conv_3x3.output_shape, # (b, 512, 28, 28) convstride=1, padsize=1, W=Normal((512, conv_3x3.output_shape[1], 3, 3), std=0.01), # bc01 b=Constant((512, ), val=0.01), printinfo=self.verbose #output_shape = (b, 512, 28, 28) ) pool_2x2 = Pool( input=conv_3x3, #input_shape=conv_3x3.output_shape, # (b, 512, 28, 28) poolsize=2, poolstride=2, poolpad=0, mode='max', printinfo=self.verbose #output_shape = (b, 512, 14, 14) ) conv_3x3 = Conv( input=pool_2x2, #input_shape=pool_2x2.output_shape, # (b, 512, 14, 14) convstride=1, padsize=1, W=Normal((512, pool_2x2.output_shape[1], 3, 3), std=0.005), # bc01 b=Constant((512, )), printinfo=self.verbose #output_shape = (b, 512, 14, 14) ) conv_3x3 = Conv( input=conv_3x3, #input_shape=conv_3x3.output_shape, # (b, 512, 14, 14) convstride=1, padsize=1, W=Normal((512, conv_3x3.output_shape[1], 3, 3), std=0.005), # bc01 b=Constant((512, )), printinfo=self.verbose #output_shape = (b, 512, 14, 14) ) conv_3x3 = Conv( input=conv_3x3, #input_shape=conv_3x3.output_shape, # (b, 512, 14, 14) convstride=1, padsize=1, W=Normal((512, conv_3x3.output_shape[1], 3, 3), std=0.005), # bc01 b=Constant((512, )), printinfo=self.verbose #output_shape = (b, 512, 14, 14) ) pool_2x2 = Pool( input=conv_3x3, #input_shape=conv_3x3.output_shape, # (b, 512, 14, 14) poolsize=2, poolstride=2, poolpad=0, mode='max', printinfo=self.verbose #output_shape = (b, 512, 7, 7) ) flatten = Flatten( input=pool_2x2, #5 #input_shape = pool_2x2.output_shape, # (b, 512, 7, 7) axis=2, # expand dimensions after the first dimension printinfo=self.verbose #output_shape = (b, 25088) ) fc_4096 = FC(input=flatten, n_out=4096, W=Normal((flatten.output_shape[1], 4096), std=0.001), b=Constant((4096, ), val=0.01), printinfo=self.verbose #input_shape = flatten.output_shape # (b, 25088) ) dropout = Dropout(input=fc_4096, n_out=fc_4096.output_shape[1], prob_drop=0.5, printinfo=self.verbose #input_shape = fc_4096.output_shape # (b, 4096) ) fc_4096 = FC(input=dropout, n_out=4096, W=Normal((dropout.output_shape[1], 4096), std=0.005), b=Constant((4096, ), val=0.01), printinfo=self.verbose #input_shape = dropout.output_shape # (b, 4096) ) dropout = Dropout(input=fc_4096, n_out=fc_4096.output_shape[1], prob_drop=0.5, printinfo=self.verbose #input_shape = fc_4096.output_shape # (b, 4096) ) softmax = Softmax(input=dropout, n_out=self.n_softmax_out, W=Normal( (dropout.output_shape[1], self.n_softmax_out), std=0.005), b=Constant((self.n_softmax_out, ), val=0), printinfo=self.verbose #input_shape = dropout.output_shape # (b, 4096) ) self.output_layer = softmax self.output = self.output_layer.output self.layers = get_layers(lastlayer=self.output_layer) self.layers = [layer for layer in self.layers \ if layer.name not in ['LRN\t','Pool\t','Flatten\t','Dropout'+ str(0.5)]] self.params, self.weight_types = get_params(self.layers) # training related self.base_lr = np.float32(self.config['learning_rate']) self.shared_lr = theano.shared(self.base_lr) self.step_idx = 0 self.mu = self.config['momentum'] # def: 0.9 # momentum self.eta = self.config['weight_decay'] #0.0002 # weight decay self.shared_x = theano.shared(np.zeros( (3, self.input_width, self.input_height, self.config['file_batch_size']), dtype=theano.config.floatX), borrow=True) self.shared_y = theano.shared(np.zeros( (self.config['file_batch_size'], ), dtype=int), borrow=True) self.grads = T.grad(self.cost, self.params) subb_ind = T.iscalar('subb') # sub batch index #print self.shared_x[:,:,:,subb_ind*self.batch_size:(subb_ind+1)*self.batch_size].shape.eval() self.subb_ind = subb_ind self.shared_x_slice = self.shared_x[:, :, :, subb_ind * self.batch_size:(subb_ind + 1) * self.batch_size] self.shared_y_slice = self.shared_y[subb_ind * self.batch_size:(subb_ind + 1) * self.batch_size]