예제 #1
0
    def visual_results(self,
                       dataset_type="TEST",
                       images_index=3,
                       FLAG_MAX_VOTE=False):

        image_w = self.config["INPUT_WIDTH"]
        image_h = self.config["INPUT_HEIGHT"]
        image_c = self.config["INPUT_CHANNELS"]
        train_dir = self.config["SAVE_MODEL_DIR"]
        FLAG_BAYES = self.config["BAYES"]

        with self.sess as sess:

            # Restore saved session
            saver = tf.train.Saver()
            saver.restore(sess, train_dir)

            kernel = variable_with_weight_decay('weights',
                                                initializer=initialization(
                                                    1, 64),
                                                shape=[1, 1, 64, 3],
                                                wd=False)
            conv = tf.nn.conv2d(self.deconv1_3,
                                kernel, [1, 1, 1, 1],
                                padding='SAME')
            biases = variable_with_weight_decay('biases',
                                                tf.constant_initializer(0.0),
                                                shape=[3],
                                                wd=False)
            logits = tf.nn.bias_add(conv, biases, name="scope.name")
            #exit()
            sess.run(tf.global_variables_initializer())
            #sess.run(logits)
            _, _, prediction = cal_loss(logits=logits, labels=self.labels_pl)
            prob = tf.nn.softmax(logits, dim=-1)
            print(
                "==================================================================================="
            )
            print(prediction)
            #exit()
            if (dataset_type == 'TRAIN'):
                test_type_path = self.config["TRAIN_FILE"]
                if type(images_index) == list:
                    indexes = images_index
                else:
                    indexes = random.sample(range(367), images_index)
                #indexes = [0,75,150,225,300]
            elif (dataset_type == 'VAL'):
                test_type_path = self.config["VAL_FILE"]
                if type(images_index) == list:
                    indexes = images_index
                else:
                    indexes = random.sample(range(101), images_index)
                #indexes = [0,25,50,75,100]
            elif (dataset_type == 'TEST'):
                test_type_path = self.config["TEST_FILE"]
                if type(images_index) == list:
                    indexes = images_index
                else:
                    indexes = random.sample(range(233), images_index)
                #indexes = [0,50,100,150,200]

            # Load images
            image_filename, label_filename = get_filename_list(
                test_type_path, self.config)
            images, labels = get_all_test_data(image_filename, label_filename)

            # Keep images subset of length images_index
            images = [images[i] for i in indexes]
            labels = [labels[i] for i in indexes]

            num_sample_generate = 30
            pred_tot = []
            var_tot = []

            for image_batch, label_batch in zip(images, labels):

                image_batch = np.reshape(image_batch,
                                         [1, image_h, image_w, image_c])
                label_batch = np.reshape(label_batch, [1, image_h, image_w, 1])

                if FLAG_BAYES is False:
                    fetches = [prediction]
                    feed_dict = {
                        self.inputs_pl: image_batch,
                        self.labels_pl: label_batch,
                        self.is_training_pl: False,
                        self.keep_prob_pl: 0.5,
                        self.batch_size_pl: 1
                    }
                    pred = sess.run(fetches=fetches, feed_dict=feed_dict)
                    pred = np.reshape(pred, [image_h, image_w])
                    var_one = []
                else:
                    feed_dict = {
                        self.inputs_pl: image_batch,
                        self.labels_pl: label_batch,
                        self.is_training_pl: False,
                        self.keep_prob_pl: 0.5,
                        self.with_dropout_pl: True,
                        self.batch_size_pl: 1
                    }
                    prob_iter_tot = []
                    pred_iter_tot = []
                    for iter_step in range(num_sample_generate):
                        prob_iter_step = sess.run(fetches=[prob],
                                                  feed_dict=feed_dict)
                        prob_iter_tot.append(prob_iter_step)
                        pred_iter_tot.append(
                            np.reshape(np.argmax(prob_iter_step, axis=-1),
                                       [-1]))

                    if FLAG_MAX_VOTE is True:
                        prob_variance, pred = MAX_VOTE(
                            pred_iter_tot, prob_iter_tot,
                            self.config["NUM_CLASSES"])
                        #acc_per = np.mean(np.equal(pred,np.reshape(label_batch,[-1])))
                        var_one = var_calculate(pred, prob_variance)
                        pred = np.reshape(pred, [image_h, image_w])
                    else:
                        prob_mean = np.nanmean(prob_iter_tot, axis=0)
                        prob_variance = np.var(prob_iter_tot, axis=0)
                        pred = np.reshape(
                            np.argmax(prob_mean, axis=-1), [-1]
                        )  #pred is the predicted label with the mean of generated samples
                        #THIS TIME I DIDN'T INCLUDE TAU
                        var_one = var_calculate(pred, prob_variance)
                        pred = np.reshape(pred, [image_h, image_w])

                pred_tot.append(pred)
                var_tot.append(var_one)

            draw_plots_bayes(images, labels, pred_tot, var_tot)
예제 #2
0
    def __init__(self, conf_file="config2.json"):
        with open(conf_file) as f:
            self.config = json.load(f)

        self.num_classes = self.config["NUM_CLASSES"]
        self.use_vgg = self.config["USE_VGG"]

        if self.use_vgg is False:
            self.vgg_param_dict = None
            print("No VGG path in config, so learning from scratch")
        else:
            self.vgg16_npy_path = self.config["VGG_FILE"]
            self.vgg_param_dict = np.load(self.vgg16_npy_path, encoding='latin1').item()
            print("VGG parameter loaded")

        self.train_file = self.config["TRAIN_FILE"]
        self.val_file = self.config["VAL_FILE"]
        self.test_file = self.config["TEST_FILE"]
        self.img_prefix = self.config["IMG_PREFIX"]
        self.label_prefix = self.config["LABEL_PREFIX"]
        self.bayes = self.config["BAYES"]
        self.opt = self.config["OPT"]
        self.saved_dir = self.config["SAVE_MODEL_DIR"]
        self.input_w = self.config["INPUT_WIDTH"]
        self.input_h = self.config["INPUT_HEIGHT"]
        self.input_c = self.config["INPUT_CHANNELS"]
        self.tb_logs = self.config["TB_LOGS"]
        self.batch_size = self.config["BATCH_SIZE"]

        self.train_loss, self.train_accuracy = [], []
        self.val_loss, self.val_acc = [], []

        self.model_version = 0  # used for saving the model
        self.saver = None
        self.images_tr, self.labels_tr = None, None
        self.images_val, self.labels_val = None, None

        self.graph = tf.Graph()
        with self.graph.as_default():
            self.sess = tf.Session()
            self.batch_size_pl = tf.placeholder(tf.int64, shape=[], name="batch_size")
            self.is_training_pl = tf.placeholder(tf.bool, name="is_training")
            self.with_dropout_pl = tf.placeholder(tf.bool, name="with_dropout")
            self.keep_prob_pl = tf.placeholder(tf.float32, shape=None, name="keep_rate")
            self.inputs_pl = tf.placeholder(tf.float32, [None, self.input_h, self.input_w, self.input_c])
            self.labels_pl = tf.placeholder(tf.int64, [None, self.input_h, self.input_w, 1])

            # Before enter the images into the architecture, we need to do Local Contrast Normalization
            # But it seems a bit complicated, so we use Local Response Normalization which implement in Tensorflow
            # Reference page:https://www.tensorflow.org/api_docs/python/tf/nn/local_response_normalization
            self.norm1 = tf.nn.lrn(self.inputs_pl, depth_radius=5, bias=1.0, alpha=0.0001, beta=0.75, name='norm1')
            # first box of convolution layer,each part we do convolution two times, so we have conv1_1, and conv1_2
            self.conv1_1 = conv_layer(self.norm1, "conv1_1", [3, 3, 3, 64], self.is_training_pl, self.use_vgg,
                                      self.vgg_param_dict)
            self.conv1_2 = conv_layer(self.conv1_1, "conv1_2", [3, 3, 64, 64], self.is_training_pl, self.use_vgg,
                                      self.vgg_param_dict)
            self.pool1, self.pool1_index, self.shape_1 = max_pool(self.conv1_2, 'pool1')

            # Second box of convolution layer(4)
            self.conv2_1 = conv_layer(self.pool1, "conv2_1", [3, 3, 64, 128], self.is_training_pl, self.use_vgg,
                                      self.vgg_param_dict)
            self.conv2_2 = conv_layer(self.conv2_1, "conv2_2", [3, 3, 128, 128], self.is_training_pl, self.use_vgg,
                                      self.vgg_param_dict)
            self.pool2, self.pool2_index, self.shape_2 = max_pool(self.conv2_2, 'pool2')

            # Third box of convolution layer(7)
            self.conv3_1 = conv_layer(self.pool2, "conv3_1", [3, 3, 128, 256], self.is_training_pl, self.use_vgg,
                                      self.vgg_param_dict)
            self.conv3_2 = conv_layer(self.conv3_1, "conv3_2", [3, 3, 256, 256], self.is_training_pl, self.use_vgg,
                                      self.vgg_param_dict)
            self.conv3_3 = conv_layer(self.conv3_2, "conv3_3", [3, 3, 256, 256], self.is_training_pl, self.use_vgg,
                                      self.vgg_param_dict)
            self.pool3, self.pool3_index, self.shape_3 = max_pool(self.conv3_3, 'pool3')

            # Fourth box of convolution layer(10)
            if self.bayes:
                self.dropout1 = tf.layers.dropout(self.pool3, rate=(1 - self.keep_prob_pl),
                                                  training=self.with_dropout_pl, name="dropout1")
                self.conv4_1 = conv_layer(self.dropout1, "conv4_1", [3, 3, 256, 512], self.is_training_pl, self.use_vgg,
                                          self.vgg_param_dict)
            else:
                self.conv4_1 = conv_layer(self.pool3, "conv4_1", [3, 3, 256, 512], self.is_training_pl, self.use_vgg,
                                          self.vgg_param_dict)
            self.conv4_2 = conv_layer(self.conv4_1, "conv4_2", [3, 3, 512, 512], self.is_training_pl, self.use_vgg,
                                      self.vgg_param_dict)
            self.conv4_3 = conv_layer(self.conv4_2, "conv4_3", [3, 3, 512, 512], self.is_training_pl, self.use_vgg,
                                      self.vgg_param_dict)
            self.pool4, self.pool4_index, self.shape_4 = max_pool(self.conv4_3, 'pool4')

            # Fifth box of convolution layers(13)
            if self.bayes:
                self.dropout2 = tf.layers.dropout(self.pool4, rate=(1 - self.keep_prob_pl),
                                                  training=self.with_dropout_pl, name="dropout2")
                self.conv5_1 = conv_layer(self.dropout2, "conv5_1", [3, 3, 512, 512], self.is_training_pl, self.use_vgg,
                                          self.vgg_param_dict)
            else:
                self.conv5_1 = conv_layer(self.pool4, "conv5_1", [3, 3, 512, 512], self.is_training_pl, self.use_vgg,
                                          self.vgg_param_dict)
            self.conv5_2 = conv_layer(self.conv5_1, "conv5_2", [3, 3, 512, 512], self.is_training_pl, self.use_vgg,
                                      self.vgg_param_dict)
            self.conv5_3 = conv_layer(self.conv5_2, "conv5_3", [3, 3, 512, 512], self.is_training_pl, self.use_vgg,
                                      self.vgg_param_dict)
            self.pool5, self.pool5_index, self.shape_5 = max_pool(self.conv5_3, 'pool5')

            # ---------------------So Now the encoder process has been Finished--------------------------------------#
            # ------------------Then Let's start Decoder Process-----------------------------------------------------#

            # First box of deconvolution layers(3)
            if self.bayes:
                self.dropout3 = tf.layers.dropout(self.pool5, rate=(1 - self.keep_prob_pl),
                                                  training=self.with_dropout_pl, name="dropout3")
                self.deconv5_1 = up_sampling(self.dropout3, self.pool5_index, self.shape_5, self.batch_size_pl,
                                             name="unpool_5")
            else:
                self.deconv5_1 = up_sampling(self.pool5, self.pool5_index, self.shape_5, self.batch_size_pl,
                                             name="unpool_5")
            self.deconv5_2 = conv_layer(self.deconv5_1, "deconv5_2", [3, 3, 512, 512], self.is_training_pl)
            self.deconv5_3 = conv_layer(self.deconv5_2, "deconv5_3", [3, 3, 512, 512], self.is_training_pl)
            self.deconv5_4 = conv_layer(self.deconv5_3, "deconv5_4", [3, 3, 512, 512], self.is_training_pl)
            # Second box of deconvolution layers(6)
            if self.bayes:
                self.dropout4 = tf.layers.dropout(self.deconv5_4, rate=(1 - self.keep_prob_pl),
                                                  training=self.with_dropout_pl, name="dropout4")
                self.deconv4_1 = up_sampling(self.dropout4, self.pool4_index, self.shape_4, self.batch_size_pl,
                                             name="unpool_4")
            else:
                self.deconv4_1 = up_sampling(self.deconv5_4, self.pool4_index, self.shape_4, self.batch_size_pl,
                                             name="unpool_4")
            self.deconv4_2 = conv_layer(self.deconv4_1, "deconv4_2", [3, 3, 512, 512], self.is_training_pl)
            self.deconv4_3 = conv_layer(self.deconv4_2, "deconv4_3", [3, 3, 512, 512], self.is_training_pl)
            self.deconv4_4 = conv_layer(self.deconv4_3, "deconv4_4", [3, 3, 512, 256], self.is_training_pl)
            # Third box of deconvolution layers(9)
            if self.bayes:
                self.dropout5 = tf.layers.dropout(self.deconv4_4, rate=(1 - self.keep_prob_pl),
                                                  training=self.with_dropout_pl, name="dropout5")
                self.deconv3_1 = up_sampling(self.dropout5, self.pool3_index, self.shape_3, self.batch_size_pl,
                                             name="unpool_3")
            else:
                self.deconv3_1 = up_sampling(self.deconv4_4, self.pool3_index, self.shape_3, self.batch_size_pl,
                                             name="unpool_3")
            self.deconv3_2 = conv_layer(self.deconv3_1, "deconv3_2", [3, 3, 256, 256], self.is_training_pl)
            self.deconv3_3 = conv_layer(self.deconv3_2, "deconv3_3", [3, 3, 256, 256], self.is_training_pl)
            self.deconv3_4 = conv_layer(self.deconv3_3, "deconv3_4", [3, 3, 256, 128], self.is_training_pl)
            # Fourth box of deconvolution layers(11)
            if self.bayes:
                self.dropout6 = tf.layers.dropout(self.deconv3_4, rate=(1 - self.keep_prob_pl),
                                                  training=self.with_dropout_pl, name="dropout6")
                self.deconv2_1 = up_sampling(self.dropout6, self.pool2_index, self.shape_2, self.batch_size_pl,
                                             name="unpool_2")
            else:
                self.deconv2_1 = up_sampling(self.deconv3_4, self.pool2_index, self.shape_2, self.batch_size_pl,
                                             name="unpool_2")
            self.deconv2_2 = conv_layer(self.deconv2_1, "deconv2_2", [3, 3, 128, 128], self.is_training_pl)
            self.deconv2_3 = conv_layer(self.deconv2_2, "deconv2_3", [3, 3, 128, 64], self.is_training_pl)
            # Fifth box of deconvolution layers(13)
            self.deconv1_1 = up_sampling(self.deconv2_3, self.pool1_index, self.shape_1, self.batch_size_pl,
                                         name="unpool_1")
            self.deconv1_2 = conv_layer(self.deconv1_1, "deconv1_2", [3, 3, 64, 64], self.is_training_pl)
            self.deconv1_3 = conv_layer(self.deconv1_2, "deconv1_3", [3, 3, 64, 64], self.is_training_pl)

            with tf.variable_scope('conv_classifier') as scope:
                self.kernel = variable_with_weight_decay('weights', initializer=initialization(1, 64),
                                                         shape=[1, 1, 64, self.num_classes], wd=False)
                self.conv = tf.nn.conv2d(self.deconv1_3, self.kernel, [1, 1, 1, 1], padding='SAME')
                self.biases = variable_with_weight_decay('biases', tf.constant_initializer(0.0),
                                                         shape=[self.num_classes], wd=False)
                self.logits = tf.nn.bias_add(self.conv, self.biases, name=scope.name)
예제 #3
0
    def __init__(self):
        # Number classes possible per pixel
        self.n_classes = FLAGS.n_classes

        # Paths to dataset (training/test/validation) summary files
        self.train_file = os.path.join(FLAGS.data_dir, 'train.txt')
        self.val_file = os.path.join(FLAGS.data_dir, 'validate.txt')
        self.test_file = os.path.join(FLAGS.data_dir, 'test.txt')

        self.input_w, self.input_h, self.input_c = FLAGS.input_dims

        self.images_tr, self.labels_tr = None, None
        self.images_val, self.labels_val = None, None

        # Create placeholders
        self.batch_size_pl = tf.placeholder(tf.int64,
                                            shape=[],
                                            name="batch_size")
        self.is_training_pl = tf.placeholder(tf.bool, name="is_training")
        self.with_dropout_pl = tf.placeholder(tf.bool, name="with_dropout")
        self.keep_prob_pl = tf.placeholder(tf.float32,
                                           shape=None,
                                           name="keep_rate")

        self.inputs_pl = tf.placeholder(
            tf.float32, [None, self.input_h, self.input_w, self.input_c])
        self.labels_pl = tf.placeholder(tf.int64,
                                        [None, self.input_h, self.input_w, 1])

        ##################
        # SegNet Encoder #
        ##################

        # SegNet includes Local Contrast Normalization - Substituted for Local Response Normalization
        self.norm1 = tf.nn.lrn(self.inputs_pl,
                               depth_radius=5,
                               bias=1.0,
                               alpha=0.0001,
                               beta=0.75,
                               name='norm1')

        # First set of convolution layers
        self.conv1_1 = conv_layer(self.norm1, "conv1_1", [3, 3, 3, 64],
                                  self.is_training_pl)
        self.conv1_2 = conv_layer(self.conv1_1, "conv1_2", [3, 3, 64, 64],
                                  self.is_training_pl)
        self.pool1, self.pool1_index, self.shape_1 = max_pool(
            self.conv1_2, 'pool1')

        # Second set of convolution layers
        self.conv2_1 = conv_layer(self.pool1, "conv2_1", [3, 3, 64, 128],
                                  self.is_training_pl)
        self.conv2_2 = conv_layer(self.conv2_1, "conv2_2", [3, 3, 128, 128],
                                  self.is_training_pl)
        self.pool2, self.pool2_index, self.shape_2 = max_pool(
            self.conv2_2, 'pool2')

        # Third set of convolution layers
        self.conv3_1 = conv_layer(self.pool2, "conv3_1", [3, 3, 128, 256],
                                  self.is_training_pl)
        self.conv3_2 = conv_layer(self.conv3_1, "conv3_2", [3, 3, 256, 256],
                                  self.is_training_pl)
        self.conv3_3 = conv_layer(self.conv3_2, "conv3_3", [3, 3, 256, 256],
                                  self.is_training_pl)
        self.pool3, self.pool3_index, self.shape_3 = max_pool(
            self.conv3_3, 'pool3')

        # Fourth set of convolution layers
        self.conv4_1 = conv_layer(self.pool3, "conv4_1", [3, 3, 256, 512],
                                  self.is_training_pl)
        self.conv4_2 = conv_layer(self.conv4_1, "conv4_2", [3, 3, 512, 512],
                                  self.is_training_pl)
        self.conv4_3 = conv_layer(self.conv4_2, "conv4_3", [3, 3, 512, 512],
                                  self.is_training_pl)
        self.pool4, self.pool4_index, self.shape_4 = max_pool(
            self.conv4_3, 'pool4')

        # Fifth set of convolution layers
        self.conv5_1 = conv_layer(self.pool4, "conv5_1", [3, 3, 512, 512],
                                  self.is_training_pl)
        self.conv5_2 = conv_layer(self.conv5_1, "conv5_2", [3, 3, 512, 512],
                                  self.is_training_pl)
        self.conv5_3 = conv_layer(self.conv5_2, "conv5_3", [3, 3, 512, 512],
                                  self.is_training_pl)
        self.pool5, self.pool5_index, self.shape_5 = max_pool(
            self.conv5_3, 'pool5')

        ##################
        # SegNet Decoder #
        ##################

        # First set of deconvolution layers
        self.deconv5_1 = up_sampling(self.pool5,
                                     self.pool5_index,
                                     self.shape_5,
                                     self.batch_size_pl,
                                     name="unpool_5")
        self.deconv5_2 = conv_layer(self.deconv5_1, "deconv5_2",
                                    [3, 3, 512, 512], self.is_training_pl)
        self.deconv5_3 = conv_layer(self.deconv5_2, "deconv5_3",
                                    [3, 3, 512, 512], self.is_training_pl)
        self.deconv5_4 = conv_layer(self.deconv5_3, "deconv5_4",
                                    [3, 3, 512, 512], self.is_training_pl)

        # Second set of deconvolution layers
        self.deconv4_1 = up_sampling(self.deconv5_4,
                                     self.pool4_index,
                                     self.shape_4,
                                     self.batch_size_pl,
                                     name="unpool_4")
        self.deconv4_2 = conv_layer(self.deconv4_1, "deconv4_2",
                                    [3, 3, 512, 512], self.is_training_pl)
        self.deconv4_3 = conv_layer(self.deconv4_2, "deconv4_3",
                                    [3, 3, 512, 512], self.is_training_pl)
        self.deconv4_4 = conv_layer(self.deconv4_3, "deconv4_4",
                                    [3, 3, 512, 256], self.is_training_pl)

        # Third set of deconvolution layers
        self.deconv3_1 = up_sampling(self.deconv4_4,
                                     self.pool3_index,
                                     self.shape_3,
                                     self.batch_size_pl,
                                     name="unpool_3")
        self.deconv3_2 = conv_layer(self.deconv3_1, "deconv3_2",
                                    [3, 3, 256, 256], self.is_training_pl)
        self.deconv3_3 = conv_layer(self.deconv3_2, "deconv3_3",
                                    [3, 3, 256, 256], self.is_training_pl)
        self.deconv3_4 = conv_layer(self.deconv3_3, "deconv3_4",
                                    [3, 3, 256, 128], self.is_training_pl)

        # Fourth set of deconvolution layers
        self.deconv2_1 = up_sampling(self.deconv3_4,
                                     self.pool2_index,
                                     self.shape_2,
                                     self.batch_size_pl,
                                     name="unpool_2")
        self.deconv2_2 = conv_layer(self.deconv2_1, "deconv2_2",
                                    [3, 3, 128, 128], self.is_training_pl)
        self.deconv2_3 = conv_layer(self.deconv2_2, "deconv2_3",
                                    [3, 3, 128, 64], self.is_training_pl)

        # Fifth set of deconvolution layers
        self.deconv1_1 = up_sampling(self.deconv2_3,
                                     self.pool1_index,
                                     self.shape_1,
                                     self.batch_size_pl,
                                     name="unpool_1")
        self.deconv1_2 = conv_layer(self.deconv1_1, "deconv1_2",
                                    [3, 3, 64, 64], self.is_training_pl)
        self.deconv1_3 = conv_layer(self.deconv1_2, "deconv1_3",
                                    [3, 3, 64, 64], self.is_training_pl)

        with tf.variable_scope('conv_classifier') as scope:
            self.kernel = variable_with_weight_decay(
                'weights',
                initializer=initialization(1, 64),
                shape=[1, 1, 64, self.n_classes],
                wd=False)
            self.conv = tf.nn.conv2d(self.deconv1_3,
                                     self.kernel, [1, 1, 1, 1],
                                     padding='SAME')
            self.biases = variable_with_weight_decay(
                'biases',
                tf.constant_initializer(0.0),
                shape=[self.n_classes],
                wd=False)
            self.logits = tf.nn.bias_add(self.conv,
                                         self.biases,
                                         name=scope.name)