def remove_wrongly_sized_connected_components(a, min_size, max_size=None, in_place=False, bin_out=False): original_dtype = a.dtype if not in_place: a = a.copy() if min_size == 0 and (max_size is None or max_size > numpy.prod(a.shape) ): # shortcut for efficiency if bin_out: numpy.place(a, a, 1) return a component_sizes = vigra_bincount(a) bad_sizes = component_sizes < min_size if max_size is not None: numpy.logical_or(bad_sizes, component_sizes > max_size, out=bad_sizes) del component_sizes bad_locations = bad_sizes[a] a[bad_locations] = 0 del bad_locations if bin_out: # Replace non-zero values with 1 numpy.place(a, a, 1) return numpy.asarray(a, dtype=original_dtype)
def filter_labels(a, min_size, max_size=None): """ Remove (set to 0) labeled connected components that are too small or too large. Note: Operates in-place. """ if min_size == 0 and (max_size is None or max_size > numpy.prod(a.shape)): # shortcut for efficiency return a component_sizes = vigra_bincount(a) bad_sizes = component_sizes < min_size if max_size is not None: numpy.logical_or( bad_sizes, component_sizes > max_size, out=bad_sizes ) bad_locations = bad_sizes[a] a[bad_locations] = 0 return a
def filter_labels(a, min_size, max_size=None): """ Remove (set to 0) labeled connected components that are too small or too large. Note: Operates in-place. """ if min_size == 0 and (max_size is None or max_size > numpy.prod(a.shape) ): # shortcut for efficiency return a component_sizes = vigra_bincount(a) bad_sizes = component_sizes < min_size if max_size is not None: numpy.logical_or(bad_sizes, component_sizes > max_size, out=bad_sizes) bad_locations = bad_sizes[a] a[bad_locations] = 0 return a
def remove_wrongly_sized_connected_components(a, min_size, max_size=None, in_place=False, bin_out=False): original_dtype = a.dtype if not in_place: a = a.copy() if min_size == 0 and (max_size is None or max_size > numpy.prod(a.shape)): # shortcut for efficiency if (bin_out): numpy.place(a,a,1) return a component_sizes = vigra_bincount(a) bad_sizes = component_sizes < min_size if max_size is not None: numpy.logical_or( bad_sizes, component_sizes > max_size, out=bad_sizes ) del component_sizes bad_locations = bad_sizes[a] a[bad_locations] = 0 del bad_locations if (bin_out): # Replace non-zero values with 1 numpy.place(a,a,1) return numpy.asarray(a, dtype=original_dtype)
def import_labeling_layer(labelLayer, labelingSlots, parent_widget=None): """ Prompt the user for layer import settings, and perform the layer import. :param labelLayer: The top label layer source :param labelingSlots: An instance of LabelingGui.LabelingSlots :param parent_widget: The Qt GUI parent object """ writeSeeds = labelingSlots.labelInput assert isinstance(writeSeeds, lazyflow.graph.Slot), "slot is of type %r" % (type(writeSeeds)) opLabels = writeSeeds.getRealOperator() assert isinstance(opLabels, lazyflow.graph.Operator), "slot's operator is of type %r" % (type(opLabels)) recentlyImported = PreferencesManager().get('labeling', 'recently imported') mostRecentProjectPath = PreferencesManager().get('shell', 'recently opened') mostRecentImageFile = PreferencesManager().get( 'DataSelection', 'recent image' ) if recentlyImported: defaultDirectory = os.path.split(recentlyImported)[0] elif mostRecentProjectPath: defaultDirectory = os.path.split(mostRecentProjectPath)[0] elif mostRecentImageFile: defaultDirectory = os.path.split(mostRecentImageFile)[0] else: defaultDirectory = os.path.expanduser('~') fileNames = DataSelectionGui.getImageFileNamesToOpen(parent_widget, defaultDirectory) fileNames = map(str, fileNames) if not fileNames: return PreferencesManager().set('labeling', 'recently imported', fileNames[0]) try: # Initialize operators opImport = OpInputDataReader( parent=opLabels.parent ) opCache = OpArrayCache( parent=opLabels.parent ) opMetadataInjector = OpMetadataInjector( parent=opLabels.parent ) opReorderAxes = OpReorderAxes( parent=opLabels.parent ) # Set up the pipeline as follows: # # opImport --> opCache --> opMetadataInjector --------> opReorderAxes --(inject via setInSlot)--> labelInput # / / # User-specified axisorder labelInput.meta.axistags opImport.WorkingDirectory.setValue(defaultDirectory) opImport.FilePath.setValue(fileNames[0] if len(fileNames) == 1 else os.path.pathsep.join(fileNames)) assert opImport.Output.ready() opCache.blockShape.setValue( opImport.Output.meta.shape ) opCache.Input.connect( opImport.Output ) assert opCache.Output.ready() opMetadataInjector.Input.connect( opCache.Output ) metadata = opCache.Output.meta.copy() opMetadataInjector.Metadata.setValue( metadata ) opReorderAxes.Input.connect( opMetadataInjector.Output ) # Transpose the axes for assignment to the labeling operator. opReorderAxes.AxisOrder.setValue( writeSeeds.meta.getAxisKeys() ) # We'll show a little window with a busy indicator while the data is loading busy_dlg = QProgressDialog(parent=parent_widget) busy_dlg.setLabelText("Importing Label Data...") busy_dlg.setCancelButton(None) busy_dlg.setMinimum(100) busy_dlg.setMaximum(100) def close_busy_dlg(*args): QApplication.postEvent(busy_dlg, QCloseEvent()) # Load the data from file into our cache # When it's done loading, close the progress dialog. req = opCache.Output[:] req.notify_finished( close_busy_dlg ) req.notify_failed( close_busy_dlg ) req.submit() busy_dlg.exec_() readData = req.result maxLabels = len(labelingSlots.labelNames.value) # Can't use return_counts feature because that requires numpy >= 1.9 #unique_read_labels, readLabelCounts = numpy.unique(readData, return_counts=True) # This does the same as the above, albeit slower, and probably with more ram. unique_read_labels = numpy.unique(readData) readLabelCounts = vigra_bincount(readData)[unique_read_labels] labelInfo = (maxLabels, (unique_read_labels, readLabelCounts)) del readData # Ask the user how to interpret the data. settingsDlg = LabelImportOptionsDlg( parent_widget, fileNames, opMetadataInjector.Output, labelingSlots.labelInput, labelInfo ) def handle_updated_axes(): # The user is specifying a new interpretation of the file's axes updated_axisorder = str(settingsDlg.axesEdit.text()) metadata = opMetadataInjector.Metadata.value.copy() metadata.axistags = vigra.defaultAxistags(updated_axisorder) opMetadataInjector.Metadata.setValue( metadata ) if opReorderAxes._invalid_axes: settingsDlg.buttonBox.button(QDialogButtonBox.Ok).setEnabled(False) # Red background settingsDlg.axesEdit.setStyleSheet("QLineEdit { background: rgb(255, 128, 128);" "selection-background-color: rgb(128, 128, 255); }") settingsDlg.axesEdit.editingFinished.connect( handle_updated_axes ) # Initialize handle_updated_axes() dlg_result = settingsDlg.exec_() if dlg_result != LabelImportOptionsDlg.Accepted: return # Get user's chosen label mapping from dlg labelMapping = settingsDlg.labelMapping # Get user's chosen offsets. # Offsets in dlg only include the file axes, not the 5D axes expected by the label input, # so expand them to full 5D axes_5d = opReorderAxes.Output.meta.getAxisKeys() tagged_offsets = collections.OrderedDict( zip( axes_5d, [0]*len(axes_5d) ) ) tagged_offsets.update( dict( zip( opMetadataInjector.Output.meta.getAxisKeys(), settingsDlg.imageOffsets ) ) ) imageOffsets = tagged_offsets.values() # Optimization if mapping is identity if labelMapping.keys() == labelMapping.values(): labelMapping = None # This will be fast (it's already cached) label_data = opReorderAxes.Output[:].wait() # Map input labels to output labels if labelMapping: # There are other ways to do a relabeling (e.g skimage.segmentation.relabel_sequential) # But this supports potentially huge values of unique_read_labels (in the billions), # without needing GB of RAM. mapping_indexes = numpy.searchsorted(unique_read_labels, label_data) new_labels = numpy.array([labelMapping[x] for x in unique_read_labels]) label_data[:] = new_labels[mapping_indexes] label_roi = numpy.array( roiFromShape(opReorderAxes.Output.meta.shape) ) label_roi += imageOffsets label_slice = roiToSlice(*label_roi) writeSeeds[label_slice] = label_data finally: opReorderAxes.cleanUp() opMetadataInjector.cleanUp() opCache.cleanUp() opImport.cleanUp()
def import_labeling_layer(labelLayer, labelingSlots, parent_widget=None): """ Prompt the user for layer import settings, and perform the layer import. :param labelLayer: The top label layer source :param labelingSlots: An instance of LabelingGui.LabelingSlots :param parent_widget: The Qt GUI parent object """ writeSeeds = labelingSlots.labelInput assert isinstance( writeSeeds, lazyflow.graph.Slot), "slot is of type %r" % (type(writeSeeds)) opLabels = writeSeeds.getRealOperator() assert isinstance(opLabels, lazyflow.graph.Operator ), "slot's operator is of type %r" % (type(opLabels)) recentlyImported = PreferencesManager().get('labeling', 'recently imported') mostRecentProjectPath = PreferencesManager().get('shell', 'recently opened') mostRecentImageFile = PreferencesManager().get('DataSelection', 'recent image') if recentlyImported: defaultDirectory = os.path.split(recentlyImported)[0] elif mostRecentProjectPath: defaultDirectory = os.path.split(mostRecentProjectPath)[0] elif mostRecentImageFile: defaultDirectory = os.path.split(mostRecentImageFile)[0] else: defaultDirectory = os.path.expanduser('~') fileNames = DataSelectionGui.getImageFileNamesToOpen( parent_widget, defaultDirectory) fileNames = map(str, fileNames) if not fileNames: return PreferencesManager().set('labeling', 'recently imported', fileNames[0]) try: # Initialize operators opImport = OpInputDataReader(parent=opLabels.parent) opCache = OpBlockedArrayCache(parent=opLabels.parent) opMetadataInjector = OpMetadataInjector(parent=opLabels.parent) opReorderAxes = OpReorderAxes(parent=opLabels.parent) # Set up the pipeline as follows: # # opImport --> opCache --> opMetadataInjector --------> opReorderAxes --(inject via setInSlot)--> labelInput # / / # User-specified axisorder labelInput.meta.axistags opImport.WorkingDirectory.setValue(defaultDirectory) opImport.FilePath.setValue(fileNames[0] if len(fileNames) == 1 else os.path.pathsep.join(fileNames)) assert opImport.Output.ready() opCache.Input.connect(opImport.Output) opCache.CompressionEnabled.setValue(True) assert opCache.Output.ready() opMetadataInjector.Input.connect(opCache.Output) metadata = opCache.Output.meta.copy() opMetadataInjector.Metadata.setValue(metadata) opReorderAxes.Input.connect(opMetadataInjector.Output) # Transpose the axes for assignment to the labeling operator. opReorderAxes.AxisOrder.setValue(writeSeeds.meta.getAxisKeys()) # We'll show a little window with a busy indicator while the data is loading busy_dlg = QProgressDialog(parent=parent_widget) busy_dlg.setLabelText("Importing Label Data...") busy_dlg.setCancelButton(None) busy_dlg.setMinimum(100) busy_dlg.setMaximum(100) def close_busy_dlg(*args): QApplication.postEvent(busy_dlg, QCloseEvent()) # Load the data from file into our cache # When it's done loading, close the progress dialog. req = opCache.Output[:] req.notify_finished(close_busy_dlg) req.notify_failed(close_busy_dlg) req.submit() busy_dlg.exec_() readData = req.result maxLabels = len(labelingSlots.labelNames.value) # Can't use return_counts feature because that requires numpy >= 1.9 #unique_read_labels, readLabelCounts = numpy.unique(readData, return_counts=True) # This does the same as the above, albeit slower, and probably with more ram. unique_read_labels = numpy.sort(vigra.analysis.unique(readData)) readLabelCounts = vigra_bincount(readData)[unique_read_labels] labelInfo = (maxLabels, (unique_read_labels, readLabelCounts)) del readData # Ask the user how to interpret the data. settingsDlg = LabelImportOptionsDlg(parent_widget, fileNames, opMetadataInjector.Output, labelingSlots.labelInput, labelInfo) def handle_updated_axes(): # The user is specifying a new interpretation of the file's axes updated_axisorder = str(settingsDlg.axesEdit.text()) metadata = opMetadataInjector.Metadata.value.copy() metadata.axistags = vigra.defaultAxistags(updated_axisorder) opMetadataInjector.Metadata.setValue(metadata) if opReorderAxes._invalid_axes: settingsDlg.buttonBox.button( QDialogButtonBox.Ok).setEnabled(False) # Red background settingsDlg.axesEdit.setStyleSheet( "QLineEdit { background: rgb(255, 128, 128);" "selection-background-color: rgb(128, 128, 255); }") settingsDlg.axesEdit.editingFinished.connect(handle_updated_axes) # Initialize handle_updated_axes() dlg_result = settingsDlg.exec_() if dlg_result != LabelImportOptionsDlg.Accepted: return # Get user's chosen label mapping from dlg labelMapping = settingsDlg.labelMapping # Get user's chosen offsets, ordered by the 'write seeds' slot axes_5d = opReorderAxes.Output.meta.getAxisKeys() tagged_offsets = collections.OrderedDict( zip(axes_5d, [0] * len(axes_5d))) tagged_offsets.update( dict( zip(opReorderAxes.Output.meta.getAxisKeys(), settingsDlg.imageOffsets))) imageOffsets = tagged_offsets.values() # Optimization if mapping is identity if labelMapping.keys() == labelMapping.values(): labelMapping = None # This will be fast (it's already cached) label_data = opReorderAxes.Output[:].wait() # Map input labels to output labels if labelMapping: # There are other ways to do a relabeling (e.g skimage.segmentation.relabel_sequential) # But this supports potentially huge values of unique_read_labels (in the billions), # without needing GB of RAM. mapping_indexes = numpy.searchsorted(unique_read_labels, label_data) new_labels = numpy.array( [labelMapping[x] for x in unique_read_labels]) label_data[:] = new_labels[mapping_indexes] label_roi = numpy.array(roiFromShape(opReorderAxes.Output.meta.shape)) label_roi += imageOffsets label_slice = roiToSlice(*label_roi) writeSeeds[label_slice] = label_data finally: opReorderAxes.cleanUp() opMetadataInjector.cleanUp() opCache.cleanUp() opImport.cleanUp()
def execute(self, slot, subindex, roi, result): assert slot == self.Output # This operator is typically used with very big rois, so be extremely memory-conscious: # - Don't request the small and big inputs in parallel. # - Clean finished requests immediately (don't wait for this function to exit) # - Delete intermediate results as soon as possible. if logger.isEnabledFor(logging.DEBUG): dtypeBytes = self.SmallLabels.meta.getDtypeBytes() roiShape = roi.stop - roi.start logger.debug("Roi shape is {} = {} MB".format(roiShape, numpy.prod(roiShape) * dtypeBytes / 1e6 )) starting_memory_usage_mb = getMemoryUsageMb() logger.debug("Starting with memory usage: {} MB".format(starting_memory_usage_mb)) def logMemoryIncrease(msg): """Log a debug message about the RAM usage compared to when this function started execution.""" if logger.isEnabledFor(logging.DEBUG): memory_increase_mb = getMemoryUsageMb() - starting_memory_usage_mb logger.debug("{}, memory increase is: {} MB".format(msg, memory_increase_mb)) smallLabelsReq = self.SmallLabels(roi.start, roi.stop) smallLabels = smallLabelsReq.wait() smallLabelsReq.clean() logMemoryIncrease("After obtaining small labels") smallNonZero = numpy.ndarray(shape=smallLabels.shape, dtype=bool) smallNonZero[...] = (smallLabels != 0) del smallLabels logMemoryIncrease("Before obtaining big labels") bigLabels = self.BigLabels(roi.start, roi.stop).wait() logMemoryIncrease("After obtaining big labels") prod = smallNonZero * bigLabels del smallNonZero # get labels that passed the masking #passed = numpy.unique(prod) passed = vigra_bincount(prod).nonzero()[0] # Much faster than unique(), which copies and sorts # 0 is not a valid label if passed[0] == 0: passed = passed[1:] logMemoryIncrease("After taking product") del prod all_label_values = numpy.zeros((bigLabels.max()+1,), dtype=numpy.uint32) for i, l in enumerate(passed): all_label_values[l] = i+1 all_label_values[0] = 0 # tricky: map the old labels to the new ones, labels that didnt pass # are mapped to zero result[:] = all_label_values[bigLabels] logMemoryIncrease("Just before return") return result