예제 #1
0
def main():
    # ----------------------------------
    # Command-line arguments
    # ----------------------------------

    args = get_args()

    # ----------------------------------
    # Construct layer graph
    # ----------------------------------

    images = lbann.Input(data_field='samples')
    # Start counting cumulative layers at 1.
    cumulative_layer_num = 1
    log('Input(datum). cumulative_layer_num={n}'.format(
        n=cumulative_layer_num))
    labels = lbann.Input(data_field='labels')
    cumulative_layer_num += 1
    log('Input(labels). cumulative_layer_num={n}'.format(
        n=cumulative_layer_num))

    probs = densenet(args.procs_per_node, 121, cumulative_layer_num, images)

    # ----------------------------------
    # Setup experiment
    # ----------------------------------

    (trainer, model, data_reader_proto,
     optimizer) = set_up_experiment(args, [images, labels], probs, labels)

    # ----------------------------------
    # Run experiment
    # ----------------------------------

    run_experiment(args, trainer, model, data_reader_proto, optimizer)
예제 #2
0
def main():
    # ----------------------------------
    # Command-line arguments
    # ----------------------------------
    args = get_args()

    # ----------------------------------
    # Construct layer graph
    # ----------------------------------
    input_node = lbann.Input()
    # Start counting cumulative layers at 1.
    cumulative_layer_num = 1
    log('Input. cumulative_layer_num={n}'.format(n=cumulative_layer_num))
    (probs, labels) = construct_layer_graph(
        121, cumulative_layer_num, input_node)

    # ----------------------------------
    # Setup experiment
    # ----------------------------------

    (model, data_reader_proto, optimizer) = set_up_experiment(
        args, input_node, probs, labels)

    # ----------------------------------
    # Run experiment
    # ----------------------------------
    # Note: Use `lbann.run` instead for non-LC systems.

    run_experiment(args, model, data_reader_proto, optimizer)
예제 #3
0
    def _test_o2l_layer_Conv(self, numDims, hasBias):
        N, C_in, H = (256, 3, 224)
        C_out = 64
        K, P, S, D = (3, 1, 1, 1)
        G = 1

        lbannConv = lbann.Convolution(lbann.Input(),
                                      num_dims=numDims,
                                      num_output_channels=C_out,
                                      has_vectors=False,
                                      conv_dims_i=K,
                                      conv_pads_i=P,
                                      conv_strides_i=S,
                                      conv_dilations_i=D,
                                      num_groups=G,
                                      has_bias=hasBias)

        inputShapes = {"x": [N, C_in] + [H] * numDims}
        paramShapes = {"W": [C_out, C_in] + [K] * numDims}
        if hasBias:
            paramShapes["b"] = [C_out]

        node = onnx.helper.make_node("Conv",
                                     inputs=["x", "W"] +
                                     (["b"] if hasBias else []),
                                     outputs=["y"],
                                     kernel_shape=[K] * numDims,
                                     pads=[P] * (numDims * 2),
                                     strides=[S] * numDims,
                                     dilations=[D] * numDims,
                                     group=G)
        onnxConv = convertOnnxNode(node, inputShapes, paramShapes).convolution

        self._assertFields(lbannConv, onnxConv)
예제 #4
0
    def _test_o2l_layer_Pool(self, numDims, poolMode, onnxOp):
        N, C, H = (256, 3, 224)
        K, P, S = (3, 1, 1)

        lbannPooling = lbann.Pooling(lbann.Input(),
                                     num_dims=numDims,
                                     has_vectors=False,
                                     pool_dims_i=K,
                                     pool_pads_i=P,
                                     pool_strides_i=S,
                                     pool_mode=poolMode)

        inputShapes = {"x": [N, C] + [H] * numDims}

        node = onnx.helper.make_node(
            onnxOp,
            inputs=["x"],
            outputs=["y"],
            kernel_shape=[K] * numDims,
            pads=[P] * (numDims * 2),
            strides=[S] * numDims,
        )
        onnxPooling = convertOnnxNode(node, inputShapes, {}).pooling

        self._assertFields(lbannPooling, onnxPooling)
예제 #5
0
    def _test_l2o_layer_convolution(self, numDims, hasBias):
        N, C_in, H = (256, 3, 224)
        C_out = 64
        K, P, S, D = (3, 1, 1, 1)
        G = 1

        onnxConv = onnx.helper.make_node("Conv",
                                         inputs=["x", "W"] +
                                         (["b"] if hasBias else []),
                                         outputs=["y"],
                                         kernel_shape=[K] * numDims,
                                         pads=[P] * (numDims * 2),
                                         strides=[S] * numDims,
                                         dilations=[D] * numDims,
                                         group=G)

        layer = lbann.Convolution(lbann.Input(name="x"),
                                  num_dims=numDims,
                                  num_output_channels=C_out,
                                  has_vectors=False,
                                  conv_dims_i=K,
                                  conv_pads_i=P,
                                  conv_strides_i=S,
                                  conv_dilations_i=D,
                                  num_groups=G,
                                  has_bias=hasBias)
        lbannConv = parseLbannLayer(layer.export_proto(),
                                    {"x_0": (N, C_in, H, H)})["nodes"]

        self._assertFields(lbannConv, onnxConv)
예제 #6
0
def main():
    # ----------------------------------
    # Command-line arguments
    # ----------------------------------

    args = get_args()

    # ----------------------------------
    # Construct layer graph
    # ----------------------------------

    input_node = lbann.Input(target_mode='classification')
    # Start counting cumulative layers at 1.
    cumulative_layer_num = 1
    log('Input. cumulative_layer_num={n}'.format(n=cumulative_layer_num))
    (probs, labels) = construct_layer_graph(args.procs_per_node, 121,
                                            cumulative_layer_num, input_node)

    # ----------------------------------
    # Setup experiment
    # ----------------------------------

    (trainer, model, data_reader_proto,
     optimizer) = set_up_experiment(args, input_node, probs, labels)

    # ----------------------------------
    # Run experiment
    # ----------------------------------

    run_experiment(args, trainer, model, data_reader_proto, optimizer)
예제 #7
0
def make_model(
        motif_size,
        walk_length,
        num_vertices,
        embed_dim,
        learn_rate,
        num_epochs,
        embeddings_dir,
):

    # Layer graph
    input_ = lbann.Slice(
        lbann.Input(data_field='samples'),
        slice_points=str_list([0, motif_size, motif_size+walk_length]),
    )
    motif_indices = lbann.Identity(input_)
    walk_indices = lbann.Identity(input_)
    gan = model.gan.CommunityGAN(
        num_vertices,
        motif_size,
        embed_dim,
        learn_rate,
    )
    loss, real_disc_prob, fake_disc_prob, gen_prob = gan(
        motif_indices,
        motif_size,
        walk_indices,
        walk_length,
    )

    # Metrics
    metrics = [
        lbann.Metric(real_disc_prob, name='D(real)'),
        lbann.Metric(fake_disc_prob, name='D(fake)'),
        lbann.Metric(gen_prob, name='G'),
    ]

    # Callbacks
    callbacks = [
        lbann.CallbackPrint(),
        lbann.CallbackTimer(),
        lbann.CallbackDumpWeights(directory=embeddings_dir,
                                  epoch_interval=num_epochs),
    ]

    # Perform computation at double precision
    for l in lbann.traverse_layer_graph(input_):
        l.datatype = lbann.DataType.DOUBLE
        for w in l.weights:
            w.datatype = lbann.DataType.DOUBLE

    # Contruct model
    return lbann.Model(
        num_epochs,
        layers=lbann.traverse_layer_graph(input_),
        objective_function=loss,
        metrics=metrics,
        callbacks=callbacks,
    )
예제 #8
0
def construct_model():
    """Construct LBANN model.

    Pilot1 Combo model

    """
    import lbann

    # Layer graph
    data = lbann.Input(data_field='samples')
    responses = lbann.Input(data_field='responses')

    pred = combo.Combo()(data)
    mse = lbann.MeanSquaredError([responses, pred])

    SS_res = lbann.Reduction(lbann.Square(lbann.Subtract(responses, pred)),
                             mode='sum')

    #SS_tot = var(x) = mean((x-mean(x))^2)
    mini_batch_size = lbann.MiniBatchSize()
    mean = lbann.Divide(lbann.BatchwiseReduceSum(responses), mini_batch_size)
    SS_tot = lbann.Divide(
        lbann.BatchwiseReduceSum(lbann.Square(lbann.Subtract(responses,
                                                             mean))),
        mini_batch_size)
    eps = lbann.Constant(value=1e-07, hint_layer=SS_tot)
    r2 = lbann.Subtract(lbann.Constant(value=1, num_neurons='1'),
                        lbann.Divide(SS_res, lbann.Add(SS_tot, eps)))

    metrics = [lbann.Metric(mse, name='mse')]
    metrics.append(lbann.Metric(r2, name='r2'))

    callbacks = [lbann.CallbackPrint(), lbann.CallbackTimer()]

    # Construct model
    num_epochs = 100
    layers = list(lbann.traverse_layer_graph([data, responses]))
    return lbann.Model(num_epochs,
                       layers=layers,
                       metrics=metrics,
                       objective_function=mse,
                       callbacks=callbacks)
예제 #9
0
    def test_o2l_layer_Relu(self):
        N, C, H, W = (100, 200, 300, 400)

        lbannRelu = lbann.Relu(lbann.Input(), )

        node = onnx.helper.make_node(
            "Relu",
            inputs=["x"],
            outputs=["y"],
        )
        onnxRelu = convertOnnxNode(node, {"x": [N, C, H, W]}, {}).relu

        self._assertFields(lbannRelu, onnxRelu)
예제 #10
0
def construct_model():
    """Model description

    """
    import lbann
    import lbann.modules

    fc = lbann.modules.FullyConnectedModule
    conv = lbann.modules.Convolution2dModule

    conv1 = conv(20, 3, stride=1, padding=1, name='conv1')
    conv2 = conv(20, 3, stride=1, padding=1, name='conv2')
    fc1 = fc(100, name='fc1')
    fc2 = fc(20, name='fc2')
    fc3 = fc(num_classes, name='fc3')
    # Layer graph
    input = lbann.Input(name='inp_tensor', target_mode='classification')
    inp_slice = lbann.Slice(input,
                            axis=0,
                            slice_points=str_list([0, dims - 1, dims]),
                            name='inp_slice')
    xdata = lbann.Identity(inp_slice)
    ylabel = lbann.Identity(inp_slice, name='gt_y')
    #NHWC to NCHW
    x = lbann.Reshape(xdata, dims='14 13 13')
    x = conv2(conv1(x))
    x = lbann.Reshape(x, dims='3380')
    x = lbann.Dropout(lbann.Relu(fc1(x)), keep_prob=0.5)
    x = lbann.Dropout(fc2(x), keep_prob=0.5)
    pred = lbann.Softmax(fc3(x))
    gt_label = lbann.OneHot(ylabel, size=num_classes)
    loss = lbann.CrossEntropy([pred, gt_label], name='loss')
    acc = lbann.CategoricalAccuracy([pred, gt_label])

    layers = list(lbann.traverse_layer_graph(input))
    # Setup objective function
    weights = set()
    for l in layers:
        weights.update(l.weights)
    obj = lbann.ObjectiveFunction(loss)

    callbacks = [lbann.CallbackPrint(), lbann.CallbackTimer()]

    # Construct model
    num_epochs = 10
    return lbann.Model(num_epochs,
                       weights=weights,
                       layers=layers,
                       metrics=[lbann.Metric(acc, name='accuracy', unit='%')],
                       objective_function=obj,
                       callbacks=callbacks)
예제 #11
0
    def test_l2o_layer_relu(self):
        N, C, H, W = (100, 200, 300, 400)

        onnxRelu = onnx.helper.make_node(
            "Relu",
            inputs=["x"],
            outputs=["y"],
        )

        layer = lbann.Relu(lbann.Input(name="x"), )
        lbannRelu = parseLbannLayer(layer.export_proto(),
                                    {"x_0": (N, C, H, W)})["nodes"]

        self._assertFields(lbannRelu, onnxRelu)
예제 #12
0
    def _test_o2l_layer_Gemm(self, hasBias):
        M, N, K = (100, 200, 300)

        lbannFC = lbann.FullyConnected(lbann.Input(),
                                       num_neurons=N,
                                       has_bias=hasBias)

        inputShapes = {"x": [M, K]}
        paramShapes = {"W": [N, K]}
        if hasBias:
            paramShapes["b"] = [N]

        node = onnx.helper.make_node("Gemm",
                                     inputs=["x", "W"] +
                                     (["b"] if hasBias else []),
                                     outputs=["y"],
                                     transB=1)
        onnxFC = convertOnnxNode(node, inputShapes,
                                 paramShapes).fully_connected

        self._assertFields(lbannFC, onnxFC)
예제 #13
0
    def test_l2o_layer_batch_normalization(self):
        N, C, H, W = (100, 200, 300, 400)
        decay = 0.95
        epsilon = 1e-6

        onnxBN = onnx.helper.make_node(
            "BatchNormalization",
            inputs=["x", "scale", "B", "mean", "var"],
            outputs=["y"],
            epsilon=epsilon,
            momentum=decay,
            spatial=1)

        layer = lbann.BatchNormalization(
            lbann.Input(name="x"),
            decay=decay,
            epsilon=epsilon,
        )
        lbannBN = parseLbannLayer(layer.export_proto(),
                                  {"x_0": (N, C, H, W)})["nodes"]

        self._assertFields(lbannBN, onnxBN)
예제 #14
0
    def test_o2l_layer_BatchNormalization(self):
        N, C, H, W = (100, 200, 300, 400)
        decay = 0.95
        epsilon = 1e-6

        lbannBN = lbann.BatchNormalization(
            lbann.Input(),
            decay=decay,
            epsilon=epsilon,
        )

        inputShapes = {"x": [N, C, H, W]}
        paramShapes = {"scale": [C], "B": [C], "mean": [C], "var": [C]}

        node = onnx.helper.make_node("BatchNormalization",
                                     inputs=["x", "scale", "B", "mean", "var"],
                                     outputs=["y"],
                                     epsilon=epsilon,
                                     momentum=decay)
        onnxBN = convertOnnxNode(node, inputShapes,
                                 paramShapes).batch_normalization

        self._assertFields(lbannBN, onnxBN)
예제 #15
0
    def _test_l2o_layer_pooling(self, numDims, poolMode, onnxOp):
        N, C, H = (256, 3, 224)
        K, P, S = (3, 1, 1)

        onnxPooling = onnx.helper.make_node(
            onnxOp,
            inputs=["x"],
            outputs=["y"],
            kernel_shape=[K] * numDims,
            pads=[P] * (numDims * 2),
            strides=[S] * numDims,
        )

        layer = lbann.Pooling(lbann.Input(name="x"),
                              num_dims=numDims,
                              has_vectors=False,
                              pool_dims_i=K,
                              pool_pads_i=P,
                              pool_strides_i=S,
                              pool_mode=poolMode)
        lbannPooling = parseLbannLayer(layer.export_proto(),
                                       {"x_0": (N, C, H, H)})["nodes"]

        self._assertFields(lbannPooling, onnxPooling)
예제 #16
0
파일: __init__.py 프로젝트: benson31/lbann
def make_model(
    data_dim,
    latent_dim,
    num_epochs,
):

    # Layer graph
    data = lbann.Input(data_field='samples')
    autoencoder = model.autoencoder.FullyConnectedAutoencoder(
        data_dim,
        latent_dim,
    )
    reconstructed = autoencoder(data)
    loss = lbann.MeanSquaredError(data, reconstructed)

    # Metrics
    metrics = [
        lbann.Metric(loss, name='loss'),
    ]

    # Callbacks
    callbacks = [
        lbann.CallbackPrint(),
        lbann.CallbackTimer(),
        lbann.CallbackDumpWeights(directory='weights',
                                  epoch_interval=num_epochs),
    ]

    # Contruct model
    return lbann.Model(
        num_epochs,
        layers=lbann.traverse_layer_graph(loss),
        objective_function=loss,
        metrics=metrics,
        callbacks=callbacks,
    )
예제 #17
0
파일: main.py 프로젝트: benson31/lbann
        epoch_size=epoch_size,
        walk_length=walk_length,
        return_param=return_param,
        inout_param=inout_param,
        num_negative_samples=num_negative_samples,
    )

# ----------------------------------
# Construct layer graph
# ----------------------------------
obj = []
metrics = []

# Embedding vectors, including negative sampling
# Note: Input is sequence of vertex IDs
input_ = lbann.Input(data_field='samples')
if args.embeddings == 'distributed':
    embeddings_weights = lbann.Weights(
        initializer=lbann.NormalInitializer(
            mean=0,
            standard_deviation=1 / args.latent_dim,
        ),
        name='embeddings',
    )
    embeddings = lbann.DistEmbedding(
        input_,
        weights=embeddings_weights,
        num_embeddings=num_vertices,
        embedding_dim=args.latent_dim,
        sparse_sgd=True,
        learning_rate=args.learning_rate,
예제 #18
0
                    default=100,
                    type=int,
                    help='number of epochs (default: 100)',
                    metavar='NUM')
#Add reader prototext

lbann.contrib.args.add_optimizer_arguments(parser)
args = parser.parse_args()

# Default data reader
cur_dir = dirname(abspath(__file__))
data_reader_prototext = join(cur_dir, 'data', args.reader_prototext)

print("DATA READER ", data_reader_prototext)

images = lbann.Input(data_field='samples')
responses = lbann.Input(data_field='responses')

num_labels = 5

images = lbann.Reshape(images, dims='1 300 300')

pred = model.PROBIESNet(num_labels)(images)

mse = lbann.MeanSquaredError([responses, pred])

# Pearson Correlation
# rho(x,y) = covariance(x,y) / sqrt( variance(x) * variance(y) )
pearson_r_cov = lbann.Covariance([pred, responses], name="pearson_r_cov")

pearson_r_var1 = lbann.Variance(responses, name="pearson_r_var1")
예제 #19
0
def construct_model(num_epochs,mcr,spectral_loss,save_batch_interval):
    """Construct LBANN model.
    """
    import lbann

    # Layer graph
    input = lbann.Input(target_mode='N/A',name='inp_img')
    
    ### Create expected labels for real and fake data (with label flipping = 0.01)
    prob_flip=0.01
    label_flip_rand = lbann.Uniform(min=0,max=1, neuron_dims='1')
    label_flip_prob = lbann.Constant(value=prob_flip, num_neurons='1')
    ones = lbann.GreaterEqual(label_flip_rand,label_flip_prob, name='is_real')
    zeros = lbann.LogicalNot(ones,name='is_fake')
    gen_ones=lbann.Constant(value=1.0,num_neurons='1')## All ones: no flip. Input for training Generator.
    
    #==============================================
    ### Implement GAN
    ##Create the noise vector
    z = lbann.Reshape(lbann.Gaussian(mean=0.0,stdev=1.0, neuron_dims="64", name='noise_vec'),dims='1 64')
    ## Creating the GAN object and implementing forward pass for both networks ###
    d1_real, d1_fake, d_adv, gen_img, img  = ExaGAN.CosmoGAN(mcr)(input,z,mcr) 
    
    #==============================================
    ### Compute quantities for adding to Loss and Metrics
    d1_real_bce = lbann.SigmoidBinaryCrossEntropy([d1_real,ones],name='d1_real_bce')
    d1_fake_bce = lbann.SigmoidBinaryCrossEntropy([d1_fake,zeros],name='d1_fake_bce')
    d_adv_bce = lbann.SigmoidBinaryCrossEntropy([d_adv,gen_ones],name='d_adv_bce')
    
    #img_loss = lbann.MeanSquaredError([gen_img,img])
    #l1_loss = lbann.L1Norm(lbann.WeightedSum([gen_img,img], scaling_factors="1 -1")) 
    
    #==============================================
    ### Set up source and destination layers
    layers = list(lbann.traverse_layer_graph(input))
    weights = set()
    src_layers,dst_layers = [],[]
    for l in layers:
        if(l.weights and "disc1" in l.name and "instance1" in l.name):
            src_layers.append(l.name)
        #freeze weights in disc2, analogous to discrim.trainable=False in Keras
        if(l.weights and "disc2" in l.name):
            dst_layers.append(l.name)
            for idx in range(len(l.weights)):
                l.weights[idx].optimizer = lbann.NoOptimizer()
        weights.update(l.weights)
    
    #l2_reg = lbann.L2WeightRegularization(weights=weights, scale=1e-4)
    
    #==============================================
    ### Define Loss and Metrics
    #Define loss (Objective function)
    loss_list=[d1_real_bce,d1_fake_bce,d_adv_bce] ## Usual GAN loss function
#     loss_list=[d1_real_bce,d1_fake_bce] ## skipping adversarial loss for G for testing spectral loss
    
    if spectral_loss:
        dft_gen_img = lbann.DFTAbs(gen_img)
        dft_img = lbann.StopGradient(lbann.DFTAbs(img))
        spec_loss = lbann.Log(lbann.MeanSquaredError(dft_gen_img, dft_img))
        
        loss_list.append(lbann.LayerTerm(spec_loss, scale=8.0))
        
    loss = lbann.ObjectiveFunction(loss_list)
    
    #Define metrics
    metrics = [lbann.Metric(d1_real_bce,name='d_real'),lbann.Metric(d1_fake_bce, name='d_fake'), lbann.Metric(d_adv_bce,name='gen_adv')]
    if spectral_loss: metrics.append(lbann.Metric(spec_loss,name='spec_loss'))
    
    #==============================================
    ### Define callbacks list
    callbacks_list=[]
    dump_outputs=True
    save_model=False
    print_model=False
    
    callbacks_list.append(lbann.CallbackPrint())
    callbacks_list.append(lbann.CallbackTimer())
    callbacks_list.append(lbann.CallbackReplaceWeights(source_layers=list2str(src_layers), destination_layers=list2str(dst_layers),batch_interval=1))
    if dump_outputs:
        #callbacks_list.append(lbann.CallbackDumpOutputs(layers='inp_img gen_img_instance1_activation', execution_modes='train validation', directory='dump_outs',batch_interval=save_batch_interval,format='npy')) 
        callbacks_list.append(lbann.CallbackDumpOutputs(layers='gen_img_instance1_activation', execution_modes='train validation', directory='dump_outs',batch_interval=save_batch_interval,format='npy')) 
    
    if save_model : callbacks_list.append(lbann.CallbackSaveModel(dir='models'))
    if print_model: callbacks_list.append(lbann.CallbackPrintModelDescription())
    
    ### Construct model
    return lbann.Model(num_epochs,
                       weights=weights,
                       layers=layers,
                       metrics=metrics,
                       objective_function=loss,
                       callbacks=callbacks_list)
예제 #20
0
                        action='store_true',
                        help='Keep error signals (default: False)')

    parser.add_argument('--batch-job',
                        action='store_true',
                        help='Run as a batch job (default: false)')

    lbann.contrib.args.add_optimizer_arguments(
        parser,
        default_optimizer="adam",
        default_learning_rate=0.001,
    )
    args = parser.parse_args()

    # Construct layer graph
    input = lbann.Input(io_buffer='partitioned', target_mode='regression')
    universes = lbann.Split(input)
    secrets = lbann.Split(input)
    statistics_group_size = 1 if args.local_batchnorm else -1
    preds = CosmoFlow(
        input_width=args.input_width,
        output_size=args.num_secrets,
        use_bn=args.use_batchnorm,
        bn_statistics_group_size=statistics_group_size)(universes)
    mse = lbann.MeanSquaredError([preds, secrets])
    obj = lbann.ObjectiveFunction([mse])
    layers = list(lbann.traverse_layer_graph(input))

    # Set parallel_strategy
    parallel_strategy = get_parallel_strategy_args(
        sample_groups=args.mini_batch_size, depth_groups=args.depth_groups)
예제 #21
0
파일: cosmoflow.py 프로젝트: benson31/lbann
        action='store_true',
        help='Allow LBANN to reclaim error signals buffers (default: False)')

    parser.add_argument('--batch-job',
                        action='store_true',
                        help='Run as a batch job (default: false)')

    lbann.contrib.args.add_optimizer_arguments(
        parser,
        default_optimizer="adam",
        default_learning_rate=0.001,
    )
    args = parser.parse_args()

    # Construct layer graph
    universes = lbann.Input(data_field='samples')
    secrets = lbann.Input(data_field='responses')
    statistics_group_size = 1 if args.local_batchnorm else -1
    preds = CosmoFlow(
        input_width=args.input_width,
        output_size=args.num_secrets,
        use_bn=args.use_batchnorm,
        bn_statistics_group_size=statistics_group_size)(universes)
    mse = lbann.MeanSquaredError([preds, secrets])
    obj = lbann.ObjectiveFunction([mse])
    layers = list(lbann.traverse_layer_graph([universes, secrets]))

    # Set parallel_strategy
    parallel_strategy = get_parallel_strategy_args(
        sample_groups=args.mini_batch_size, depth_groups=args.depth_groups)
    pooling_id = 0
예제 #22
0
def construct_model(run_args):
    """Construct LBANN model.

    Initial model for ATOM molecular VAE

    """
    import lbann

    pad_index = run_args.pad_index
    assert pad_index is not None

    sequence_length = run_args.sequence_length
    assert sequence_length is not None, 'should be training seq len + bos + eos'

    print("sequence length is {}, which is training sequence len + bos + eos".format(sequence_length))
    data_layout = "data_parallel"
    # Layer graph
    input_ = lbann.Input(data_field='samples',name='inp_data')
    #Note input assumes to come from encoder script concatenation of input smiles + z
    inp_slice = lbann.Slice(input_, axis=0,
                             slice_points=str_list([0, sequence_length, sequence_length+run_args.z_dim]),
                             name='inp_slice')
    inp_smile = lbann.Identity(inp_slice,name='inp_smile')
    z  = lbann.Identity(inp_slice, name='z')
    wae_loss= []
    input_feature_dims = sequence_length

    embedding_size = run_args.embedding_dim
    dictionary_size = run_args.num_embeddings
    assert embedding_size is not None
    assert dictionary_size is not None

    save_output = True if run_args.dump_outputs_dir else False

    print("save output? ", save_output, "out dir ",  run_args.dump_outputs_dir)
    #uncomment below for random sampling
    #z = lbann.Gaussian(mean=0.0,stdev=1.0, neuron_dims=str(run_args.z_dim))
    x = lbann.Slice(inp_smile, slice_points=str_list([0, input_feature_dims]))
    x = lbann.Identity(x)
    waemodel = molwae.MolWAE(input_feature_dims,
                           dictionary_size,
                           embedding_size,
                           pad_index,run_args.z_dim,save_output=save_output)
    x_emb = lbann.Embedding(
            x,
            num_embeddings=waemodel.dictionary_size,
            embedding_dim=waemodel.embedding_size,
            name='emb',
            weights=waemodel.emb_weights
    )


    pred, arg_max = waemodel.forward_decoder(x_emb,z)

    recon = waemodel.compute_loss(x, pred)



    wae_loss.append(recon)

    layers = list(lbann.traverse_layer_graph(input_))
    # Setup objective function
    weights = set()
    for l in layers:
      weights.update(l.weights)
    #l2_reg = lbann.L2WeightRegularization(weights=weights, scale=1e-4)

    #wae_loss.append(l2_reg)
    print("LEN wae loss ", len(wae_loss))

    obj = lbann.ObjectiveFunction(wae_loss)

    # Initialize check metric callback
    metrics = [lbann.Metric(recon, name='recon')]

    callbacks = [lbann.CallbackPrint(),
                 lbann.CallbackTimer()]


    #Dump output (activation) for post processing
    pred_tensor = lbann.Concatenation(arg_max, name='pred_tensor')
    conc_out = lbann.Concatenation([input_,pred_tensor], name='conc_out')
    callbacks.append(lbann.CallbackDumpOutputs(batch_interval=run_args.dump_outputs_interval,
                       execution_modes='test',
                       directory=run_args.dump_outputs_dir,
                       layers=f'{conc_out.name}'))
    # Construct model
    return lbann.Model(run_args.num_epochs,
                       weights=weights,
                       layers=layers,
                       objective_function=obj,
                       metrics=metrics,
                       callbacks=callbacks)
예제 #23
0
def construct_model(run_args):
    """Construct LBANN model.

    Initial model for ATOM molecular VAE

    """
    import lbann

    print("Dump model dir ", run_args.dump_model_dir)
    assert run_args.dump_model_dir, "evaluate script asssumes a pretrained WAE model"
    pad_index = run_args.pad_index
    assert pad_index is not None

    sequence_length = run_args.sequence_length
    assert sequence_length is not None

    print("sequence length is {}".format(sequence_length))
    data_layout = "data_parallel"
    # Layer graph
    input_ = lbann.Identity(lbann.Input(name='inp', data_field='samples'),
                            name='inp1')
    wae_loss = []
    input_feature_dims = sequence_length

    embedding_size = run_args.embedding_dim
    dictionary_size = run_args.num_embeddings
    assert embedding_size is not None
    assert dictionary_size is not None

    save_output = True if run_args.dump_outputs_dir else False

    print("save output? ", save_output, "out dir ", run_args.dump_outputs_dir)
    z = lbann.Gaussian(mean=0.0, stdev=1.0, neuron_dims=run_args.z_dim)

    waemodel = molwae.MolWAE(input_feature_dims, dictionary_size,
                             embedding_size, pad_index, run_args.z_dim,
                             save_output)
    recon, d1_real, d1_fake, d_adv, arg_max = waemodel(input_, z)

    zero = lbann.Constant(value=0.0, num_neurons='1', name='zero')
    one = lbann.Constant(value=1.0, num_neurons='1', name='one')

    d1_real_bce = lbann.SigmoidBinaryCrossEntropy([d1_real, one],
                                                  name='d1_real_bce')
    d1_fake_bce = lbann.SigmoidBinaryCrossEntropy([d1_fake, zero],
                                                  name='d1_fake_bce')
    d_adv_bce = lbann.SigmoidBinaryCrossEntropy([d_adv, one], name='d_adv_bce')

    wae_loss.append(recon)

    layers = list(lbann.traverse_layer_graph(input_))
    # Setup objective function
    weights = set()
    src_layers = []
    dst_layers = []
    for l in layers:
        if (l.weights and "disc0" in l.name and "instance1" in l.name):
            src_layers.append(l.name)
        #freeze weights in disc2
        if (l.weights and "disc1" in l.name):
            dst_layers.append(l.name)
            for idx in range(len(l.weights)):
                l.weights[idx].optimizer = lbann.NoOptimizer()
        weights.update(l.weights)
    l2_weights = [
        w for w in weights if not isinstance(w.optimizer, lbann.NoOptimizer)
    ]
    l2_reg = lbann.L2WeightRegularization(weights=l2_weights, scale=1e-4)

    wae_loss.append(d1_real_bce)
    wae_loss.append(d_adv_bce)
    wae_loss.append(d1_fake_bce)
    wae_loss.append(l2_reg)
    print("LEN wae loss ", len(wae_loss))

    obj = lbann.ObjectiveFunction(wae_loss)

    # Initialize check metric callback
    metrics = [
        lbann.Metric(d_adv_bce, name='adv_loss'),
        lbann.Metric(recon, name='recon')
    ]

    callbacks = [
        lbann.CallbackPrint(),
        #lbann.CallbackStepLearningRate(step=10, amt=0.5),
        lbann.CallbackTimer()
    ]

    callbacks.append(
        lbann.CallbackReplaceWeights(source_layers=list2str(src_layers),
                                     destination_layers=list2str(dst_layers),
                                     batch_interval=2))

    #Dump output (activation) for post processing
    if (run_args.dump_outputs_dir):
        pred_tensor = lbann.Concatenation(arg_max, name='pred_tensor')
        callbacks.append(
            lbann.CallbackDumpOutputs(
                batch_interval=run_args.dump_outputs_interval,
                execution_modes='test',
                directory=run_args.dump_outputs_dir,
                layers=f'inp pred_tensor {waemodel.q_mu.name}'))
    # Construct model
    return lbann.Model(run_args.num_epochs,
                       weights=weights,
                       layers=layers,
                       objective_function=obj,
                       metrics=metrics,
                       callbacks=callbacks)
예제 #24
0
파일: classifier.py 프로젝트: oyamay/lbann
def setup(data_reader_file,
          name='classifier',
          num_labels=200,
          mini_batch_size=128,
          num_epochs=1000,
          learning_rate=0.1,
          bn_statistics_group_size=2,
          fc_data_layout='model_parallel',
          warmup_epochs=50,
          learning_rate_drop_interval=50,
          learning_rate_drop_factor=0.25,
          checkpoint_interval=None):

    # Setup input data
    input = lbann.Input(target_mode = 'classification')
    images = lbann.Identity(input)
    labels = lbann.Identity(input)

    # Classification network
    head_cnn = modules.ResNet(bn_statistics_group_size=bn_statistics_group_size)
    class_fc = lbann.modules.FullyConnectedModule(num_labels,
                                                  activation=lbann.Softmax,
                                                  name=f'{name}_fc',
                                                  data_layout=fc_data_layout)
    x = head_cnn(images)
    probs = class_fc(x)

    # Setup objective function
    cross_entropy = lbann.CrossEntropy([probs, labels])
    l2_reg_weights = set()
    for l in lbann.traverse_layer_graph(input):
        if type(l) == lbann.Convolution or type(l) == lbann.FullyConnected:
            l2_reg_weights.update(l.weights)
    l2_reg = lbann.L2WeightRegularization(weights=l2_reg_weights, scale=0.0002)
    obj = lbann.ObjectiveFunction([cross_entropy, l2_reg])

    # Setup model
    metrics = [lbann.Metric(lbann.CategoricalAccuracy([probs, labels]),
                            name='accuracy', unit='%')]
    callbacks = [lbann.CallbackPrint(), lbann.CallbackTimer()]
    if checkpoint_interval:
        callbacks.append(
            lbann.CallbackCheckpoint(
                checkpoint_dir='ckpt',
                checkpoint_epochs=5
            )
        )

    # Learning rate schedules
    if warmup_epochs:
        callbacks.append(
            lbann.CallbackLinearGrowthLearningRate(
                target=learning_rate * mini_batch_size / 128,
                num_epochs=warmup_epochs
            )
        )
    if learning_rate_drop_factor:
        callbacks.append(
            lbann.CallbackDropFixedLearningRate(
                drop_epoch=list(range(0, num_epochs, learning_rate_drop_interval)),
                amt=learning_rate_drop_factor)
        )

    # Construct model
    model = lbann.Model(num_epochs,
                        layers=lbann.traverse_layer_graph(input),
                        objective_function=obj,
                        metrics=metrics,
                        callbacks=callbacks)

    # Setup optimizer
    # opt = lbann.Adam(learn_rate=learning_rate, beta1=0.9, beta2=0.999, eps=1e-8)
    opt = lbann.SGD(learn_rate=learning_rate, momentum=0.9)

    # Load data reader from prototext
    data_reader_proto = lbann.lbann_pb2.LbannPB()
    with open(data_reader_file, 'r') as f:
        google.protobuf.text_format.Merge(f.read(), data_reader_proto)
    data_reader_proto = data_reader_proto.data_reader
    for reader_proto in data_reader_proto.reader:
        reader_proto.python.module_dir = os.path.dirname(os.path.realpath(__file__))

    # Return experiment objects
    return model, data_reader_proto, opt
예제 #25
0
def make_model(num_vertices=None,
               node_features=None,
               num_classes=None,
               dataset=None,
               kernel_type='GCN',
               callbacks=None,
               num_epochs=1):
    '''Construct a model DAG using one of the Graph Kernels

    Args:
        num_vertices (int): Number of vertices of each graph (default: None) 
        node_features (int): Number of features per noded (default: None)
        num_classes (int): Number of classes as targets (default: None)
        dataset (str): Preset data set to use. Either a datset parameter has to be 
                       supplied or all of num_vertices, node_features, and 
                       num_classes have to be supplied. (default: None) 
        kernel_type (str): Graph Kernel to use in model. Expected one of 
                            GCN, GIN, Graph, or GatedGraph (deafult: GCN)
        callbacks (list): Callbacks for the model. If set to None the model description, 
                          GPU usage, training_output, and timer is reported. 
                          (default: None)                    
        num_epochs (int): Number of epochs to run (default: 1)
    Returns:
        (lbann Model Object: A model object with the supplied callbacks, dataset
                               presets, and graph kernels. 
    '''

    assert num_vertices != dataset  #Ensure atleast one of the values is set

    if dataset is not None:
        assert num_vertices is None

        if dataset == 'MNIST':
            num_vertices = 75
            num_classes = 10
            node_features = 1

        elif dataset == 'PROTEINS':
            num_vertices = 100
            num_classes = 2
            node_features = 3
        else:
            raise Exception("Unkown Dataset")

    assert num_vertices is not None
    assert num_classes is not None
    assert node_features is not None

    #----------------------------------
    # Reshape and Slice Input Tensor
    #----------------------------------

    input_ = lbann.Input(target_mode='classification')

    # Input dimensions should be (num_vertices * node_features + num_vertices^2 + num_classes )
    # Input should have atleast two children since the target is classification

    data = lbann_Graph_Data(input_, num_vertices, node_features, num_classes)

    feature_matrix = data.x
    adj_matrix = data.adj
    target = data.y

    #----------------------------------
    # Perform Graph Convolution
    #----------------------------------

    if kernel_type == 'GIN':
        x = GINConvLayer(feature_matrix, adj_matrix)
    elif kernel_type == 'GCN':
        x = GCNConvLayer(feature_matrix, adj_matrix)
    elif kernel_type == 'Graph':
        x = GraphConvLayer(feature_matrix, adj_matrix)
    elif kernel_type == 'GatedGraph':
        x = GATConvLayer(feature_matrix, adj_matrix)
    else:
        ValueError(
            'Invalid Graph kernel specifier "{}" recieved. Expected one of:\
                    GIN,GCN,Graph or GatedGraph'.format(kernel_type))

    out_channel = x.shape[1]
    #----------------------------------
    # Apply Reduction on Node Features
    #----------------------------------

    average_vector = lbann.Constant(value=1 / num_vertices,
                                    num_neurons=str_list([1, num_vertices]),
                                    name="Average_Vector")
    x = x.get_mat(out_channel)

    x = lbann.MatMul(average_vector, x, name="Node_Feature_Reduction")

    # X is now a vector with output_channel dimensions

    x = lbann.Reshape(x, dims=str_list([out_channel]), name="Squeeze")
    x = lbann.FullyConnected(x, num_neurons=64, name="hidden_layer_1")
    x = lbann.Relu(x, name="hidden_layer_1_activation")
    x = lbann.FullyConnected(x,
                             num_neurons=num_classes,
                             name="Output_Fully_Connected")

    #----------------------------------
    # Loss Function and Accuracy s
    #----------------------------------

    probs = lbann.Softmax(x, name="Softmax")
    loss = lbann.CrossEntropy(probs, target, name="Cross_Entropy_Loss")
    accuracy = lbann.CategoricalAccuracy(probs, target, name="Accuracy")

    layers = lbann.traverse_layer_graph(input_)

    if callbacks is None:
        print_model = lbann.CallbackPrintModelDescription(
        )  #Prints initial Model after Setup
        training_output = lbann.CallbackPrint(
            interval=1,
            print_global_stat_only=False)  #Prints training progress
        gpu_usage = lbann.CallbackGPUMemoryUsage()
        timer = lbann.CallbackTimer()
        callbacks = [print_model, training_output, gpu_usage, timer]
    else:
        if isinstance(callbacks, list):
            callbacks = callbacks

    metrics = [lbann.Metric(accuracy, name='accuracy', unit="%")]

    model = lbann.Model(num_epochs,
                        layers=layers,
                        objective_function=loss,
                        metrics=metrics,
                        callbacks=callbacks)
    return model
예제 #26
0
파일: lenet.py 프로젝트: oyamay/lbann
desc = ('Train LeNet on MNIST data using LBANN.')
parser = argparse.ArgumentParser(description=desc)
lbann.contrib.args.add_scheduler_arguments(parser)
parser.add_argument('--job-name',
                    action='store',
                    default='lbann_lenet',
                    type=str,
                    help='scheduler job name (default: lbann_lenet)')
args = parser.parse_args()

# ----------------------------------
# Construct layer graph
# ----------------------------------

# Input data
input_ = lbann.Input(target_mode='classification')
images = lbann.Identity(input_)
labels = lbann.Identity(input_)

# LeNet
x = lbann.Convolution(images,
                      num_dims=2,
                      num_output_channels=6,
                      num_groups=1,
                      conv_dims_i=5,
                      conv_strides_i=1,
                      conv_dilations_i=1,
                      has_bias=True)
x = lbann.Relu(x)
x = lbann.Pooling(x,
                  num_dims=2,
예제 #27
0
def construct_model(run_args):
    """Construct LBANN model.

    Initial model for ATOM molecular VAE

    """
    import lbann

    pad_index = run_args.pad_index
    assert pad_index is not None

    sequence_length = run_args.sequence_length
    assert sequence_length is not None

    print("sequence length is {}".format(sequence_length))
    data_layout = "data_parallel"
    # Layer graph
    input_ = lbann.Identity(lbann.Input(name='inp', target_mode="N/A"),
                            name='inp1')
    vae_loss = []
    input_feature_dims = sequence_length

    embedding_size = run_args.embedding_dim
    dictionary_size = run_args.num_embeddings
    assert embedding_size is not None
    assert dictionary_size is not None

    kl, recon = molvae.MolVAE(input_feature_dims, dictionary_size,
                              embedding_size, pad_index)(input_)

    vae_loss.append(kl)
    vae_loss.append(recon)
    print("LEN vae loss ", len(vae_loss))

    layers = list(lbann.traverse_layer_graph(input_))
    # Setup objective function
    weights = set()
    for l in layers:
        weights.update(l.weights)
    l2_reg = lbann.L2WeightRegularization(weights=weights, scale=5e-4)
    obj = lbann.ObjectiveFunction(vae_loss)

    # Initialize check metric callback
    metrics = [
        lbann.Metric(kl, name='kl_loss'),
        lbann.Metric(recon, name='recon')
    ]

    callbacks = [lbann.CallbackPrint(), lbann.CallbackTimer()]

    if (run_args.dump_weights_interval > 0):
        callbacks.append(
            lbann.CallbackDumpWeights(
                directory=run_args.dump_weights_dir,
                epoch_interval=run_args.dump_weights_interval))
    if (run_args.ltfb):
        send_name = ('' if run_args.weights_to_send == 'All' else
                     run_args.weights_to_send)  #hack for Merlin empty string
        weights_to_ex = [w.name for w in weights if send_name in w.name]
        print("LTFB Weights to exchange ", weights_to_ex)
        callbacks.append(
            lbann.CallbackLTFB(batch_interval=run_args.ltfb_batch_interval,
                               metric='recon',
                               weights=list2str(weights_to_ex),
                               low_score_wins=True,
                               exchange_hyperparameters=True))

    if (run_args.warmup):
        callbacks.append(
            lbann.CallbackLinearGrowthLearningRate(target=run_args.lr / 512 *
                                                   run_args.batch_size,
                                                   num_epochs=5))

    # Construct model
    return lbann.Model(run_args.num_epochs,
                       weights=weights,
                       layers=layers,
                       objective_function=obj,
                       metrics=metrics,
                       callbacks=callbacks)
예제 #28
0
def construct_model():
    """Construct LBANN model.

    ExaGAN  model

    """
    import lbann

    # Layer graph
    input = lbann.Input(target_mode='N/A',name='inp_img')
    #label flipping
    label_flip_rand = lbann.Uniform(min=0,max=1, neuron_dims='1')
    label_flip_prob = lbann.Constant(value=0.01, num_neurons='1')
    one = lbann.GreaterEqual(label_flip_rand,label_flip_prob, name='is_real')
    zero = lbann.LogicalNot(one,name='is_fake')

    z = lbann.Reshape(lbann.Gaussian(mean=0.0,stdev=1.0, neuron_dims="64", name='noise_vec'),dims='1 64')
    d1_real, d1_fake, d_adv, gen_img  = ExaGAN.CosmoGAN()(input,z)

    d1_real_bce = lbann.SigmoidBinaryCrossEntropy([d1_real,one],name='d1_real_bce')
    d1_fake_bce = lbann.SigmoidBinaryCrossEntropy([d1_fake,zero],name='d1_fake_bce')
    d_adv_bce = lbann.SigmoidBinaryCrossEntropy([d_adv,one],name='d_adv_bce')

    layers = list(lbann.traverse_layer_graph(input))
    # Setup objective function
    weights = set()
    src_layers = []
    dst_layers = []
    for l in layers:
      if(l.weights and "disc1" in l.name and "instance1" in l.name):
        src_layers.append(l.name)
      #freeze weights in disc2, analogous to discrim.trainable=False in Keras
      if(l.weights and "disc2" in l.name):
        dst_layers.append(l.name)
        for idx in range(len(l.weights)):
          l.weights[idx].optimizer = lbann.NoOptimizer()
      weights.update(l.weights)
    #l2_reg = lbann.L2WeightRegularization(weights=weights, scale=1e-4)
    obj = lbann.ObjectiveFunction([d1_real_bce,d1_fake_bce,d_adv_bce])
    # Initialize check metric callback
    metrics = [lbann.Metric(d1_real_bce,name='d_real'),
               lbann.Metric(d1_fake_bce, name='d_fake'),
               lbann.Metric(d_adv_bce,name='gen')]

    callbacks = [lbann.CallbackPrint(),
                 lbann.CallbackTimer(),
                 #Uncomment to dump output for plotting and further statistical analysis
                 #lbann.CallbackDumpOutputs(layers='inp_img gen_img_instance1_activation',
                 #                          execution_modes='train validation',
                 #                          directory='dump_outs',
                 #                          batch_interval=100,
                 #                          format='npy'),
                 lbann.CallbackReplaceWeights(source_layers=list2str(src_layers),
                                      destination_layers=list2str(dst_layers),
                                      batch_interval=2)]

    # Construct model
    num_epochs = 20
    return lbann.Model(num_epochs,
                       weights=weights,
                       layers=layers,
                       metrics=metrics,
                       objective_function=obj,
                       callbacks=callbacks)
예제 #29
0
def construct_model(run_args):
    """Construct LBANN model.

    Initial model for ATOM molecular VAE

    """
    import lbann

    print("Dump model dir ", run_args.dump_model_dir)
    assert run_args.dump_model_dir, "evaluate script asssumes a pretrained WAE model"
    pad_index = run_args.pad_index
    assert pad_index is not None

    sequence_length = run_args.sequence_length
    assert sequence_length is not None

    print("sequence length is {}".format(sequence_length))
    data_layout = "data_parallel"
    # Layer graph
    input_ = lbann.Identity(lbann.Input(name='inp', target_mode="N/A"),
                            name='inp1')
    wae_loss = []
    input_feature_dims = sequence_length

    embedding_size = run_args.embedding_dim
    dictionary_size = run_args.num_embeddings
    assert embedding_size is not None
    assert dictionary_size is not None

    save_output = False

    print("save output? ", save_output, "out dir ", run_args.dump_outputs_dir)
    z = lbann.Gaussian(mean=0.0, stdev=1.0, neuron_dims="128")

    x = lbann.Slice(input_, slice_points=str_list([0, input_feature_dims]))
    x = lbann.Identity(x)
    waemodel = molwae.MolWAE(input_feature_dims, dictionary_size,
                             embedding_size, pad_index, save_output)
    x_emb = lbann.Embedding(x,
                            num_embeddings=waemodel.dictionary_size,
                            embedding_dim=waemodel.embedding_size,
                            name='emb',
                            weights=waemodel.emb_weights)

    latentz = waemodel.forward_encoder(x_emb)

    fake_loss = lbann.MeanAbsoluteError(latentz, z)

    layers = list(lbann.traverse_layer_graph(input_))
    # Setup objective function
    weights = set()
    for l in layers:
        weights.update(l.weights)

    obj = lbann.ObjectiveFunction(fake_loss)

    callbacks = [lbann.CallbackPrint(), lbann.CallbackTimer()]

    #Dump output (activation) for post processing
    conc_out = lbann.Concatenation([input_, latentz], name='conc_out')
    callbacks.append(
        lbann.CallbackDumpOutputs(
            batch_interval=run_args.dump_outputs_interval,
            execution_modes='test',
            directory=run_args.dump_outputs_dir,
            layers=f'{conc_out.name}'))
    # Construct model
    return lbann.Model(run_args.num_epochs,
                       weights=weights,
                       layers=layers,
                       objective_function=obj,
                       callbacks=callbacks)
예제 #30
0
파일: main.py 프로젝트: szaman19/lbann
    name='decoder_embeddings',
)

# ----------------------------------
# Construct layer graph
# ----------------------------------

# Properties of graph and random walk
num_graph_nodes = dataset.max_graph_node_id() + 1
walk_length = dataset.walk_context_length
num_negative_samples = dataset.num_negative_samples
input_size = dataset.sample_dims()[0]

# Embedding vectors, including negative sampling
# Note: Input is sequence of graph node IDs
input_ = lbann.Identity(lbann.Input())
input_slice = lbann.Slice(
    input_,
    slice_points=f'0 {num_negative_samples+1} {input_size}'
)
decoder_embeddings = lbann.Embedding(
    input_slice,
    weights=decoder_embeddings_weights,
    num_embeddings=num_graph_nodes,
    embedding_dim=args.latent_dim,
)
encoder_embeddings = lbann.Embedding(
    input_slice,
    weights=encoder_embeddings_weights,
    num_embeddings=num_graph_nodes,
    embedding_dim=args.latent_dim,