def test(): descriptors = [AbbeValueDescr()] # deciders = [NeuronDecider(maxEpochs=800)] deciders = [LDADec(), QDADec(), GradBoostDec()] s_stars = [Star(name="Searched_{}".format(i)) for i in range(100)] c_stars = [Star(name="Contam_{}".format(i)) for i in range(100)] x = np.linspace(0, 10, 100) for st in s_stars: st.putLightCurve([x, np.cos(x) - 0.5 + np.random.random_sample(100)]) for st in c_stars: st.putLightCurve([x, np.exp(x * np.random.random_sample(100))]) filt = StarsFilter(descriptors, deciders) filt.learn(s_stars, c_stars) searcher = StarsSearcherRedis([filt], db_connector="OgleII", save_path="/tmp/test_stars") queries = [{"field": "LMC_SC3", "starid": i} for i in range(1, 10)] searcher.queryStars(queries) run_workers(n_workers=1) assert len(searcher.getPassedStars()) > 0 time.sleep(2) assert len(searcher.getStatus()) == len(queries)
def _loadDatFiles(self, star_paths, numberOfFiles): if not star_paths: return [] stars = [] counter = 1 # Load every light curve and put it into star object for singleFile in tqdm(star_paths[:numberOfFiles], desc="Loading dat files:"): if self.files_to_load and os.path.basename( singleFile) not in self.files_to_load: break lc = LightCurve(self._loadLcFromDat(singleFile)) # Check if light curve is not empty if (len(lc.mag) >= 1): db_ident = self.parseFileName(singleFile) if self.db_ident: ident = {self.db_ident: {"name": db_ident}} else: ident = {"file": {"name": db_ident}} star = Star(ident=ident) star.starClass = self.star_class star.putLightCurve(lc) stars.append(star) counter += 1 return stars
def setUp(self): self.star1 = Star() x = np.linspace(1, 10, 100) self.star1.lightCurve = [x, np.sin(x)] self.star2 = Star() self.star2.lightCurve = [x, np.cos(x)] self.star3 = Star() self.star3.lightCurve = [x, np.cos(x + 0.5)]
def _createStar(self, data, keys, lc_opt, **kwargs): """ Create Star objects from query result Parameters ---------- data : list Result from query keys : list Name of columns of data lc_opt : bool Obtain light curves if True Returns -------- list List of Star objects """ stars = [] for raw_star in data: ident = {} for key, value in self.IDENT_MAP.iteritems(): db_ident = {} if isinstance(value, (list, tuple)): for ide in value: db_ident[ide] = raw_star[keys.index(ide)] name = self.NAME.format(**db_ident) else: name = raw_star[keys.index(value)] if not db_ident: db_ident = None ident[key] = {"name": name, "db_ident": db_ident} more = {} for key, value in self.MORE_MAP.iteritems(): more_item = raw_star[keys.index(key)] more[value] = more_item raw_star_dict = dict(zip(keys, raw_star)) star = Star(name=self.NAME.format(**raw_star_dict), coo=(raw_star_dict[self.RA], raw_star_dict[self.DEC]), ident=ident, more=more) if lc_opt: star.putLightCurve(self._getLightCurve(star=star, file_name=raw_star_dict.get( self.LC_FILE, None), **kwargs)) stars.append(star) return stars
def _createStars(self, header, rows, lc_tmp): # [u'No', u'Field', u'StarID', u'RA', u'Decl', u'V', u'I', u'B'] # [u'No', u'Field', u'StarID', u'RA', u'Decl', u'I'] cols_map = self._parseHeader(header) stars = [] for row in rows: field = str(row[cols_map.get("field")]) starid = str(row[cols_map.get("starid")]) ra = float(row[cols_map.get("ra")]) dec = float(row[cols_map.get("dec")]) identifiers = {} identifiers["Macho"] = row[cols_map.get("macho_id")] identifiers["Asas"] = row[cols_map.get("asas_id")] identifiers["OgleII"] = row[cols_map.get("ogle_ii_id")] identifiers["GCVS"] = row[cols_map.get("gcvs_id")] name = str(row[cols_map.get("name")]) ident = {"OgleIII": {"name": name, "db_ident": {"field": field, "starid": starid}}} for ide, val in identifiers.iteritems(): if val != u"\xa0": ident[ide] = {"name": str(val)} query_ide = self._parseDbNames(ide, val) if query_ide: ident[ide]["db_ident"] = query_ide more = {} for col in self.MORE: if cols_map.get(col) and cols_map.get(col): val = row[cols_map.get(col)] if val != u"\xa0": try: val = float(val) except: val = str(val) more[col] = val coo = (ra * 15, dec, "deg") st = Star(ident, name, coo, more) st.starClass = str(row[cols_map.get("type")]) if lc_tmp: lc = self._getLc(name) if lc and len(lc) != 0: st.putLightCurve(np.array(lc), meta=self.LC_META) stars.append(st) return stars
def setUp(self): self.descriptors = PackageReader.getClassesDict("descriptors") self.stars = [] for i in range(self.n_stars): star = Star() x = np.linspace(0, 100, 100) y = np.sin(x**i) y[0] = np.nan x[:20] = np.linspace(-30, -10, 20) star.putLightCurve([x, y]) self.stars.append(star)
def _createStar(self, df, lc_opt, **kwargs): """ Create Star objects from query result Parameters ---------- df : lc_opt : bool Obtain light curves if True Returns -------- list List of Star objects """ stars = [] for _, _raw_star in df.iterrows(): raw_star_dict = _raw_star.to_dict() ident = {} for key, value in self.IDENT_MAP.items(): db_ident = {} if isinstance(value, (list, tuple)): for ide in value: db_ident[ide] = raw_star_dict.get(ide) name = self.get_name(db_ident) else: name = raw_star_dict.get(value) if not db_ident: db_ident = None ident[key] = {"name": name, "db_ident": db_ident} more = {} for key, value in self.MORE_MAP.items(): more_item = raw_star_dict.get(key) more[value] = more_item star = Star(name=self.get_name(raw_star_dict), coo=(raw_star_dict[self.RA], raw_star_dict[self.DEC]), ident=ident, more=more) if lc_opt: star.putLightCurve(self._getLightCurve(star=star, file_name=raw_star_dict.get( self.LC_FILE, None), **kwargs)) stars.append(star) return stars
def parse_stars(fi): stars = [] for st_fi in fi: if st_fi.__dict__.get("_name", "").endswith(".dat"): fi_io = StringIO(st_fi.read()) lc = FileManager._loadLcFromDat(fi_io) st = Star(name=st_fi.__dict__["_name"].split(".")[0]) st.putLightCurve(lc) stars.append(st) else: stars.append(FileManager._createStarFromFITS(fits.open(st_fi))) return stars
def parseRawStar(self, raw_html, load_lc, multiple_lcs=False): """ Parse html retrieved from the query into Star objects Parameters ---------- raw_html : str Raw html retrieved from the query load_lc : bool load_lc : Option for downloading light curve multiple_lcs : bool If True search for all stars will be executed Returns ------- list Star objects retrieved from the query """ # TODO: Multiple lcs loading. So far just the first star is retrieved # if multiple_lcs: # json_data = re.search('var dataSet0 = {(?P<json_data>.*)}', raw_html) # else: # json_data = re.search('var dataSet0 = {(?P<json_data>.*)}', raw_html) json_data = re.search('var dataSet0 = {(?P<json_data>.*)}', raw_html) if not json_data: return [] json_data = json_data.group("json_data") for to_quo in self.TO_QUO: json_data = json_data.replace("{0}".format(to_quo), '"{0}"'.format(to_quo)) star_id = re.search('ID=(?P<name>.*)&PLOT=plot', raw_html).group("name") json_data = eval("{%s}" % json_data) star = Star(name=json_data.get("label"), ident={"CRST": { "name": star_id }}) if load_lc: lc = LightCurve(json_data["data"]) star.putLightCurve(lc) return [star]
def setup(): descriptors = [AbbeValueDescr()] # deciders = [NeuronDecider(maxEpochs=800)] deciders = [LDADec(), QDADec()] s_stars = [Star(name="Searched_{}".format(i)) for i in range(100)] c_stars = [Star(name="Contam_{}".format(i)) for i in range(100)] m_stars = [Star(name="Contam_{}".format(i)) for i in range(100)] x = np.linspace(0, 10, 100) for st in s_stars: st.putLightCurve([x, np.cos(x) - 0.5 + np.random.random_sample(100)]) for st in c_stars: st.putLightCurve([x, np.exp(x * np.random.random_sample(100))]) filt = StarsFilter(descriptors, deciders) return s_stars, c_stars, m_stars, filt
def _parseStar(self, _star, lc): """Transform kplr Star object into package Star object""" star = Star() more = {} ident = {} data_dict = _star.__dict__ for key, value in data_dict.items(): if key in list(self.STAR_MORE_MAP.keys()): more[self.STAR_MORE_MAP[key]] = value elif key in list(self.IDENTIFIER.keys()): ident[self.IDENTIFIER[key]] = {} ident[self.IDENTIFIER[key]]["identifier"] = value ident[self.IDENTIFIER[key]]["name"] = "kic_" + value ra = data_dict.get(self.RA_IDENT) dec = data_dict.get(self.DEC_IDENT) star.name = "KIC_" + data_dict.get(self.NAME, "") if lc: star.lightCurve, _ = self._getLightCurve(_star, lim=1) star.coo = (ra, dec) star.ident = ident star.more = more return star
def _createStars(self, header, rows, lc_tmp): # [u'No', u'Field', u'StarID', u'RA', u'Decl', u'V', u'I', u'B'] # [u'No', u'Field', u'StarID', u'RA', u'Decl', u'I'] cols_map = self._parseHeader(header) stars = [] for row in rows: field = str(row[cols_map.get("field")]) starid = int(row[cols_map.get("starid")]) ra = float(row[cols_map.get("ra")]) dec = float(row[cols_map.get("dec")]) colors = ["i_mag", "b_mag", "v_mag"] more = {} for col in colors: if cols_map.get(col) and cols_map.get(col): try: more[col] = float(row[cols_map.get(col)]) except: pass name = field + "_" + str(starid) coo = (ra * 15, dec, "deg") ident = { "OgleII": { "name": name, "db_ident": { "field": field, "starid": starid } } } st = Star(ident, name, coo, more) if lc_tmp: lc = self._getLc(field, starid, lc_tmp) if lc and len(lc) != 0: st.putLightCurve(np.array(lc), meta=self.LC_META) stars.append(st) return stars
class TestComparative(unittest.TestCase): def setUp(self): self.star1 = Star() x = np.linspace(1, 10, 100) x2 = x**2 self.star1.putLightCurve([x, x2 / x2[-1]]) self.star2 = Star() self.star2.putLightCurve([x, np.cos(x)]) self.star3 = Star() xx = np.linspace(1, 45, 600) self.star3.putLightCurve([xx, np.cos(xx + 0.1) * xx]) def testCurveShape(self): lcdes = CurvesShapeDescr([self.star2], 0.6, 10) assert lcdes.getSpaceCoords([self.star3])[0] < lcdes.getSpaceCoords( [self.star1])[0] def testHistShape(self): hist = HistShapeDescr([self.star2], 10, 5) assert hist.getSpaceCoords([self.star3])[0] > hist.getSpaceCoords( [self.star1])[0] def testVarioShape(self): vario = VariogramShapeDescr([self.star2], 10, 5) assert vario.getSpaceCoords([self.star3]) > vario.getSpaceCoords( [self.star1])
def parseRawStar(self, raw_html, load_lc): json_data = re.search('var dataSet0 = {(?P<json_data>.*)}', raw_html) if not json_data: return [] json_data = json_data.group("json_data") for to_quo in self.TO_QUO: json_data = json_data.replace("{0}".format(to_quo), '"{0}"'.format(to_quo)) star_id = re.search('ID=(?P<name>.*)&PLOT=plot', raw_html).group("name") json_data = eval("{%s}" % json_data) star = Star(name=json_data.get("label"), ident={"CRST": { "name": star_id }}) if load_lc: lc = LightCurve(json_data["data"]) star.putLightCurve(lc) return [star]
def setUp(self): self.star1 = Star() x = np.linspace(1, 10, 100) x2 = x**2 self.star1.putLightCurve([x, x2 / x2[-1]]) self.star2 = Star() self.star2.putLightCurve([x, np.cos(x)]) self.star3 = Star() xx = np.linspace(1, 45, 600) self.star3.putLightCurve([xx, np.cos(xx + 0.1) * xx])
def _createStarFromFITS(self, fits): DB_NAME_END = "_name" DB_IDENT_SEP = "_id_" prim_hdu = fits[0].header ra = prim_hdu.get(self.FITS_RA) dec = prim_hdu.get(self.FITS_DEC) ra_unit = prim_hdu.get(self.FITS_RA_UNIT) dec_unit = prim_hdu.get(self.FITS_DEC_UNIT) star = Star(name=prim_hdu.get(self.FITS_NAME), coo=(ra, dec, (ra_unit, dec_unit)), starClass=prim_hdu.get(self.FITS_CLASS)) ident = {} more = {} for db_name_key in list(prim_hdu.keys()): if db_name_key.endswith(DB_NAME_END): db_name = db_name_key[:-len(DB_NAME_END)] ident[db_name] = {} ident[db_name]["name"] = prim_hdu[db_name_key] elif DB_IDENT_SEP in db_name_key: db_name, ident_key = db_name_key.split(DB_IDENT_SEP) if not ident[db_name].get("db_ident"): ident[db_name]["db_ident"] = {} ident[db_name]["db_ident"][ident_key] = prim_hdu[db_name_key] elif db_name_key not in [ "SIMPLE", "BITPIX", "NAXIS", "EXTEND", self.FITS_RA, self.FITS_DEC, self.FITS_RA_UNIT, self.FITS_DEC_UNIT, self.FITS_NAME, self.FITS_CLASS ]: more[db_name_key.lower()] = prim_hdu[db_name_key] star.ident = ident star.more = more for lc_hdu in fits[1:]: star.putLightCurve(self._createLcFromFits(lc_hdu)) fits.close() return star
def setUp(self): N = 20 x = np.linspace(0, 10, 100) self.template = [] for ii in range(N): st = Star(name="TemplateStar%i" % ii) st.putLightCurve([x, np.cos(x) + np.random.normal(x) * 0.1]) self.template.append(st) self.variables = [] for ii in range(N): st = Star(name="VariableStar%i" % ii) st.putLightCurve([x, np.sin(x) + np.random.normal(x) * 0.1]) self.variables.append(st) self.noisy = [] for ii in range(N): st = Star(name="NonvariableStar%i" % ii) st.putLightCurve([x, np.random.normal(x) * 2]) self.noisy.append(st)