def run(self, args): """ Run the challenge mode """ route_indexer = RouteIndexer(args.routes, args.scenarios, args.repetitions) if args.resume: route_indexer.resume(args.checkpoint) self.statistics_manager.resume(args.checkpoint) else: self.statistics_manager.clear_record(args.checkpoint) route_indexer.save_state(args.checkpoint) while route_indexer.peek(): # setup config = route_indexer.next() # run self._load_and_run_scenario(args, config) route_indexer.save_state(args.checkpoint) # save global statistics print("\033[1m> Registering the global statistics\033[0m") global_stats_record = self.statistics_manager.compute_global_statistics(route_indexer.total) StatisticsManager.save_global_record(global_stats_record, self.sensor_icons, route_indexer.total, args.checkpoint)
def run(self, args, customized_data): """ Run the challenge mode """ route_indexer = RouteIndexer(args.routes, args.scenarios, args.repetitions) if args.resume: route_indexer.resume(self.save_path) self.statistics_manager.resume(self.save_path) else: self.statistics_manager.clear_record(self.save_path) while route_indexer.peek(): # setup config = route_indexer.next() # run self._load_and_run_scenario(args, config, customized_data) self._cleanup(ego=True) route_indexer.save_state(self.save_path) # save global statistics # modification global_stats_record = self.statistics_manager.compute_global_statistics( route_indexer.total) StatisticsManager.save_global_record(global_stats_record, self.sensors, self.save_path)
def run(self, args, filename, data_folder, route_folder, model_path): """ Run the challenge mode """ route_indexer = RouteIndexer(args.routes, args.scenarios, args.repetitions, route_folder) if args.resume: route_indexer.resume(args.checkpoint) self.statistics_manager.resume(args.checkpoint) else: self.statistics_manager.clear_record(args.checkpoint) k = 0 while route_indexer.peek(): #x = time.time() k += 1 # setup config = route_indexer.next() # run self._load_and_run_scenario(args, config, data_folder, route_folder, k, model_path) self._cleanup(ego=True) route_indexer.save_state(args.checkpoint) # save global statistics global_stats_record, route_in_km = self.statistics_manager.compute_global_statistics( route_indexer.total) StatisticsManager.save_global_record(global_stats_record, route_in_km, self.sensors, args.checkpoint, filename, config)
def run(self, args): """ Run the challenge mode """ # agent_class_name = getattr(self.module_agent, 'get_entry_point')() # self.agent_instance = getattr(self.module_agent, agent_class_name)(args.agent_config) route_indexer = RouteIndexer(args.routes, args.scenarios, args.repetitions) if args.resume: route_indexer.resume(args.checkpoint) self.statistics_manager.resume(args.checkpoint) else: self.statistics_manager.clear_record(args.checkpoint) route_indexer.save_state(args.checkpoint) while route_indexer.peek(): # setup config = route_indexer.next() # run self._load_and_run_scenario(args, config) for obj in gc.get_objects(): try: if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)): print(type(obj), obj.size()) except: pass route_indexer.save_state(args.checkpoint) # save global statistics print("\033[1m> Registering the global statistics\033[0m") global_stats_record = self.statistics_manager.compute_global_statistics(route_indexer.total) StatisticsManager.save_global_record(global_stats_record, self.sensor_icons, route_indexer.total, args.checkpoint)