def setUpClass(self): from fastlmm.util.util import create_directory_if_necessary create_directory_if_necessary(self.tempout_dir, isfile=False) self.pythonpath = os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)))) self.bedbase = os.path.join(self.pythonpath, 'dataset1/dataset1') self.phen_fn = os.path.join(self.pythonpath, 'dataset1/dataset1.phe') #Create eigendecompositions logging.info("Creating eigendecomposition files") for i in xrange(1,11): output_file = os.path.abspath(os.path.join(self.tempout_dir, 'dataset1_nochr{}.npz'.format(i))) extractSim = 'dataset1/extracts/nochr{0}_extract.txt'.format(i) bed, _ = leapUtils.loadData(self.bedbase, extractSim, self.phen_fn, loadSNPs=True) leapMain.eigenDecompose(bed, output_file)
#Iterate over each chromosome frame_list = [] for chrom in chromosomes: print() print('Analyzing chromosome', chrom, '...') #Create a bed object excluding SNPs from the current chromosome bedExclude = leapUtils.getExcludedChromosome(bfile, chrom) #Create a bed object including only SNPs from the current chromosome bedTest = leapUtils.getChromosome(bfile, chrom) #Compute eigendecomposition for the data eigenFile = 'temp_eigen.npz' eigen = leapMain.eigenDecompose(bedExclude, outFile=eigenFile) #compute heritability explained by this data h2 = leapMain.calcH2(phenoFile, prevalence, eigen, keepArr=indsToKeep, h2coeff=1.0) #Compute liabilities explained by this data liabs = leapMain.probit(bedExclude, phenoFile, h2, prevalence, eigen, keepArr=indsToKeep)
#Iterate over each chromosome frame_list = [] for chrom in chromosomes: print print 'Analyzing chromosome', chrom, '...' #Create a bed object excluding SNPs from the current chromosome bedExclude = leapUtils.getExcludedChromosome(bfile, chrom) #Create a bed object including only SNPs from the current chromosome bedTest = leapUtils.getChromosome(bfile, chrom) #Compute eigendecomposition for the data eigenFile = 'temp_eigen.npz' eigen = leapMain.eigenDecompose(bedExclude, outFile=eigenFile) #compute heritability explained by this data h2 = leapMain.calcH2(phenoFile, prevalence, eigen, keepArr=indsToKeep) #Compute liabilities explained by this data liabs = leapMain.probit(bedExclude, phenoFile, h2, prevalence, eigen, keepArr=indsToKeep) #perform GWAS, using the liabilities as the observed phenotypes results_df = leapMain.leapGwas(bedExclude, bedTest, liabs, h2) frame_list.append(results_df) #Join together the results of all chromosomes, and print the top ranking SNPs frame = pd.concat(frame_list) frame.sort("PValue", inplace=True) frame.index = np.arange(len(frame))