def __init__(self, run_name=""): super(ModelTrajectoryToAction, self).__init__() self.model_name = "lsvd_action" self.run_name = run_name self.writer = LoggingSummaryWriter(log_dir="runs/" + run_name) self.params = get_current_parameters()["ModelPVN"] self.aux_weights = get_current_parameters()["AuxWeights"] self.prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE) self.iter = nn.Parameter(torch.zeros(1), requires_grad=False) # Common # -------------------------------------------------------------------------------------------------------------- self.map_transform_w_to_s = MapTransformerBase( source_map_size=self.params["global_map_size"], dest_map_size=self.params["local_map_size"], world_size=self.params["world_size_px"]) self.map_transform_r_to_w = MapTransformerBase( source_map_size=self.params["local_map_size"], dest_map_size=self.params["global_map_size"], world_size=self.params["world_size_px"]) # Output an action given the global semantic map if self.params["map_to_action"] == "downsample2": self.map_to_action = EgoMapToActionTriplet( map_channels=self.params["map_to_act_channels"], map_size=self.params["local_map_size"], other_features_size=self.params["emb_size"]) elif self.params["map_to_action"] == "cropped": self.map_to_action = CroppedMapToActionTriplet( map_channels=self.params["map_to_act_channels"], map_size=self.params["local_map_size"], manual=self.params["manual_rule"], path_only=self.params["action_in_path_only"], recurrence=self.params["action_recurrence"]) self.spatialsoftmax = SpatialSoftmax2d() self.gt_fill_missing = MapBatchFillMissing( self.params["local_map_size"], self.params["world_size_px"]) # Don't freeze the trajectory to action weights, because it will be pre-trained during path-prediction training # and finetuned on all timesteps end-to-end enable_weight_saving(self.map_to_action, "map_to_action", alwaysfreeze=False, neverfreeze=True) self.action_loss = ActionLoss() self.env_id = None self.seg_idx = None self.prev_instruction = None self.seq_step = 0 self.get_act_start_pose = None self.gt_labels = None
def __init__(self, run_name="", model_class=MODEL_RSS, aux_class_features=False, aux_grounding_features=False, aux_class_map=False, aux_grounding_map=False, aux_goal_map=False, aux_lang=False, aux_traj=False, rot_noise=False, pos_noise=False): super(ModelTrajectoryTopDown, self).__init__() self.model_name = "sm_trajectory" + str(model_class) self.model_class = model_class print("Init model of type: ", str(model_class)) self.run_name = run_name self.writer = LoggingSummaryWriter(log_dir="runs/" + run_name) self.params = get_current_parameters()["Model"] self.aux_weights = get_current_parameters()["AuxWeights"] self.prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE) self.iter = nn.Parameter(torch.zeros(1), requires_grad=False) # Auxiliary Objectives self.use_aux_class_features = aux_class_features self.use_aux_grounding_features = aux_grounding_features self.use_aux_class_on_map = aux_class_map self.use_aux_grounding_on_map = aux_grounding_map self.use_aux_goal_on_map = aux_goal_map self.use_aux_lang = aux_lang self.use_aux_traj_on_map = aux_traj self.use_aux_reg_map = self.aux_weights["regularize_map"] self.use_rot_noise = rot_noise self.use_pos_noise = pos_noise # Path-pred FPV model definition # -------------------------------------------------------------------------------------------------------------- self.img_to_features_w = FPVToGlobalMap( source_map_size=self.params["global_map_size"], world_size_px=self.params["world_size_px"], world_size=self.params["world_size_m"], res_channels=self.params["resnet_channels"], map_channels=self.params["feature_channels"], img_w=self.params["img_w"], img_h=self.params["img_h"], img_dbg=IMG_DBG) self.map_accumulator_w = LeakyIntegratorGlobalMap(source_map_size=self.params["global_map_size"], world_in_map_size=self.params["world_size_px"]) # Pre-process the accumulated map to do language grounding if necessary - in the world reference frame if self.use_aux_grounding_on_map and not self.use_aux_grounding_features: self.map_processor_a_w = LangFilterMapProcessor( source_map_size=self.params["global_map_size"], world_size=self.params["world_size_px"], embed_size=self.params["emb_size"], in_channels=self.params["feature_channels"], out_channels=self.params["relevance_channels"], spatial=False, cat_out=True) else: self.map_processor_a_w = IdentityMapProcessor(source_map_size=self.params["global_map_size"], world_size=self.params["world_size_px"]) if self.use_aux_goal_on_map: self.map_processor_b_r = LangFilterMapProcessor(source_map_size=self.params["local_map_size"], world_size=self.params["world_size_px"], embed_size=self.params["emb_size"], in_channels=self.params["relevance_channels"], out_channels=self.params["goal_channels"], spatial=True, cat_out=True) else: self.map_processor_b_r = IdentityMapProcessor(source_map_size=self.params["local_map_size"], world_size=self.params["world_size_px"]) pred_channels = self.params["goal_channels"] + self.params["relevance_channels"] # Common # -------------------------------------------------------------------------------------------------------------- # Sentence Embedding self.sentence_embedding = SentenceEmbeddingSimple( self.params["word_emb_size"], self.params["emb_size"], self.params["emb_layers"]) self.map_transform_w_to_r = MapTransformerBase(source_map_size=self.params["global_map_size"], dest_map_size=self.params["local_map_size"], world_size=self.params["world_size_px"]) self.map_transform_r_to_w = MapTransformerBase(source_map_size=self.params["local_map_size"], dest_map_size=self.params["global_map_size"], world_size=self.params["world_size_px"]) # Batch select is used to drop and forget semantic maps at those timestaps that we're not planning in self.batch_select = MapBatchSelect() # Since we only have path predictions for some timesteps (the ones not dropped above), we use this to fill # in the missing pieces by reorienting the past trajectory prediction into the frame of the current timestep self.map_batch_fill_missing = MapBatchFillMissing(self.params["local_map_size"], self.params["world_size_px"]) # Passing true to freeze will freeze these weights regardless of whether they've been explicitly reloaded or not enable_weight_saving(self.sentence_embedding, "sentence_embedding", alwaysfreeze=False) # Output an action given the global semantic map if self.params["map_to_action"] == "downsample2": self.map_to_action = EgoMapToActionTriplet( map_channels=self.params["map_to_act_channels"], map_size=self.params["local_map_size"], other_features_size=self.params["emb_size"]) elif self.params["map_to_action"] == "cropped": self.map_to_action = CroppedMapToActionTriplet( map_channels=self.params["map_to_act_channels"], map_size=self.params["local_map_size"], other_features_size=self.params["emb_size"] ) # Don't freeze the trajectory to action weights, because it will be pre-trained during path-prediction training # and finetuned on all timesteps end-to-end enable_weight_saving(self.map_to_action, "map_to_action", alwaysfreeze=False, neverfreeze=True) # Auxiliary Objectives # -------------------------------------------------------------------------------------------------------------- # We add all auxiliaries that are necessary. The first argument is the auxiliary name, followed by parameters, # followed by variable number of names of inputs. ModuleWithAuxiliaries will automatically collect these inputs # that have been saved with keep_auxiliary_input() during execution if aux_class_features: self.add_auxiliary(ClassAuxiliary2D("aux_class", None, self.params["feature_channels"], self.params["num_landmarks"], self.params["dropout"], "fpv_features", "lm_pos_fpv", "lm_indices")) if aux_grounding_features: self.add_auxiliary(ClassAuxiliary2D("aux_ground", None, self.params["relevance_channels"], 2, self.params["dropout"], "fpv_features_g", "lm_pos_fpv", "lm_mentioned")) if aux_class_map: self.add_auxiliary(ClassAuxiliary2D("aux_class_map", self.params["world_size_px"], self.params["feature_channels"], self.params["num_landmarks"], self.params["dropout"], "map_s_w_select", "lm_pos_map_select", "lm_indices_select")) if aux_grounding_map: self.add_auxiliary(ClassAuxiliary2D("aux_grounding_map", self.params["world_size_px"], self.params["relevance_channels"], 2, self.params["dropout"], "map_a_w_select", "lm_pos_map_select", "lm_mentioned_select")) if aux_goal_map: self.add_auxiliary(GoalAuxiliary2D("aux_goal_map", self.params["goal_channels"], self.params["world_size_px"], "map_b_w", "goal_pos_map")) # RSS model uses templated data for landmark and side prediction if self.use_aux_lang and self.params["templates"]: self.add_auxiliary(ClassAuxiliary("aux_lang_lm", self.params["emb_size"], self.params["num_landmarks"], 1, "sentence_embed", "lm_mentioned_tplt")) self.add_auxiliary(ClassAuxiliary("aux_lang_side", self.params["emb_size"], self.params["num_sides"], 1, "sentence_embed", "side_mentioned_tplt")) # CoRL model uses alignment-model groundings elif self.use_aux_lang: # one output for each landmark, 2 classes per output. This is for finetuning, so use the embedding that's gonna be fine tuned self.add_auxiliary(ClassAuxiliary("aux_lang_lm_nl", self.params["emb_size"], 2, self.params["num_landmarks"], "sentence_embed", "lang_lm_mentioned")) if self.use_aux_traj_on_map: self.add_auxiliary(PathAuxiliary2D("aux_path", "map_b_r_select", "traj_gt_r_select")) if self.use_aux_reg_map: self.add_auxiliary(FeatureRegularizationAuxiliary2D("aux_regularize_features", None, "l1", "map_s_w_select", "lm_pos_map_select")) self.goal_good_criterion = GoalPredictionGoodCriterion(ok_distance=3.2) self.goal_acc_meter = MovingAverageMeter(10) self.print_auxiliary_info() self.action_loss = ActionLoss() self.env_id = None self.prev_instruction = None self.seq_step = 0
class ModelTrajectoryToAction(ModuleWithAuxiliaries): def __init__(self, run_name=""): super(ModelTrajectoryToAction, self).__init__() self.model_name = "lsvd_action" self.run_name = run_name self.writer = LoggingSummaryWriter(log_dir="runs/" + run_name) self.params = get_current_parameters()["ModelPVN"] self.aux_weights = get_current_parameters()["AuxWeights"] self.prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE) self.iter = nn.Parameter(torch.zeros(1), requires_grad=False) # Common # -------------------------------------------------------------------------------------------------------------- self.map_transform_w_to_s = MapTransformerBase( source_map_size=self.params["global_map_size"], dest_map_size=self.params["local_map_size"], world_size=self.params["world_size_px"]) self.map_transform_r_to_w = MapTransformerBase( source_map_size=self.params["local_map_size"], dest_map_size=self.params["global_map_size"], world_size=self.params["world_size_px"]) # Output an action given the global semantic map if self.params["map_to_action"] == "downsample2": self.map_to_action = EgoMapToActionTriplet( map_channels=self.params["map_to_act_channels"], map_size=self.params["local_map_size"], other_features_size=self.params["emb_size"]) elif self.params["map_to_action"] == "cropped": self.map_to_action = CroppedMapToActionTriplet( map_channels=self.params["map_to_act_channels"], map_size=self.params["local_map_size"], manual=self.params["manual_rule"], path_only=self.params["action_in_path_only"], recurrence=self.params["action_recurrence"]) self.spatialsoftmax = SpatialSoftmax2d() self.gt_fill_missing = MapBatchFillMissing( self.params["local_map_size"], self.params["world_size_px"]) # Don't freeze the trajectory to action weights, because it will be pre-trained during path-prediction training # and finetuned on all timesteps end-to-end enable_weight_saving(self.map_to_action, "map_to_action", alwaysfreeze=False, neverfreeze=True) self.action_loss = ActionLoss() self.env_id = None self.seg_idx = None self.prev_instruction = None self.seq_step = 0 self.get_act_start_pose = None self.gt_labels = None # TODO: Try to hide these in a superclass or something. They take up a lot of space: def cuda(self, device=None): ModuleWithAuxiliaries.cuda(self, device) self.map_to_action.cuda(device) self.action_loss.cuda(device) self.map_transform_w_to_s.cuda(device) self.map_transform_r_to_w.cuda(device) self.gt_fill_missing.cuda(device) return self def get_iter(self): return int(self.iter.data[0]) def inc_iter(self): self.iter += 1 def init_weights(self): self.map_to_action.init_weights() def reset(self): # TODO: This is error prone. Create a class StatefulModule, iterate submodules and reset all stateful modules super(ModelTrajectoryToAction, self).reset() self.map_transform_w_to_s.reset() self.map_transform_r_to_w.reset() self.gt_fill_missing.reset() def setEnvContext(self, context): print("Set env context to: " + str(context)) self.env_id = context["env_id"] def start_segment_rollout(self): import rollout.run_metadata as md m_size = self.params["local_map_size"] w_size = self.params["world_size_px"] self.gt_labels = get_top_down_ground_truth_static_global( md.ENV_ID, md.START_IDX, md.END_IDX, m_size, m_size, w_size, w_size) self.seg_idx = md.SEG_IDX self.gt_labels = self.maybe_cuda(self.gt_labels) if self.params["clear_history"]: self.start_sequence() def get_action(self, state, instruction): """ Given a DroneState (from PomdpInterface) and instruction, produce a numpy 4D action (x, y, theta, pstop) :param state: DroneState object with the raw image from the simulator :param instruction: Tokenized instruction given the corpus #TODO: Absorb corpus within model :return: """ prof = SimpleProfiler(print=True) prof.tick(".") # TODO: Simplify this self.eval() images_np_pure = state.image state_np = state.state state = Variable(none_padded_seq_to_tensor([state_np])) #print("Act: " + debug_untokenize_instruction(instruction)) # Add the batch dimension first_step = True if instruction == self.prev_instruction: first_step = False self.prev_instruction = instruction if first_step: self.get_act_start_pose = self.cam_poses_from_states(state[0:1]) self.seq_step += 1 # This is for training the policy to mimic the ground-truth state distribution with oracle actions # b_traj_gt_w_select = b_traj_ground_truth[b_plan_mask_t[:, np.newaxis, np.newaxis, np.newaxis].expand_as(b_traj_ground_truth)].view([-1] + gtsize) traj_gt_w = Variable(self.gt_labels) b_poses = self.cam_poses_from_states(state) # TODO: These source and dest should go as arguments to get_maps (in forward pass not params) transformer = MapTransformerBase( source_map_size=self.params["global_map_size"], world_size=self.params["world_size_px"], dest_map_size=self.params["local_map_size"]) self.maybe_cuda(transformer) transformer.set_maps(traj_gt_w, None) traj_gt_r, _ = transformer.get_maps(b_poses) self.clear_inputs("traj_gt_r_select") self.clear_inputs("traj_gt_w_select") self.keep_inputs("traj_gt_r_select", traj_gt_r) self.keep_inputs("traj_gt_w_select", traj_gt_w) action = self(traj_gt_r, firstseg=[self.seq_step == 1]) output_action = action.squeeze().data.cpu().numpy() stop_prob = output_action[3] output_stop = 1 if stop_prob > self.params["stop_threshold"] else 0 output_action[3] = output_stop return output_action def deterministic_action(self, action_mean, action_std, stop_prob): batch_size = action_mean.size(0) action = Variable( empty_float_tensor((batch_size, 4), self.is_cuda, self.cuda_device)) action[:, 0:3] = action_mean[:, 0:3] action[:, 3] = stop_prob return action def sample_action(self, action_mean, action_std, stop_prob): action = torch.normal(action_mean, action_std) stop = torch.bernoulli(stop_prob) return action, stop # This is called before beginning an execution sequence def start_sequence(self): self.seq_step = 0 self.reset() print("RESETTED!") return def cam_poses_from_states(self, states): cam_pos = states[:, 9:12] cam_rot = states[:, 12:16] pose = Pose(cam_pos, cam_rot) return pose def save(self, epoch): filename = self.params[ "map_to_action_file"] + "_" + self.run_name + "_" + str(epoch) save_pytorch_model(self.map_to_action, filename) print("Saved action model to " + filename) def forward(self, traj_gt_r, firstseg=None): """ :param images: BxCxHxW batch of images (observations) :param states: BxK batch of drone states :param instructions: BxM LongTensor where M is the maximum length of any instruction :param instr_lengths: list of len B of integers, indicating length of each instruction :param has_obs: list of booleans of length B indicating whether the given element in the sequence has an observation :param yield_semantic_maps: If true, will not compute actions (full model), but return the semantic maps that were built along the way in response to the images. This is ugly, but allows code reuse :return: """ action_pred = self.map_to_action(traj_gt_r, None, fistseg_mask=firstseg) out_action = self.deterministic_action(action_pred[:, 0:3], None, action_pred[:, 3]) self.keep_inputs("action", out_action) self.prof.tick("map_to_action") return out_action def maybe_cuda(self, tensor): if self.is_cuda: if False: if type(tensor) is Variable: tensor.data.pin_memory() elif type(tensor) is Pose: pass elif type(tensor) is torch.FloatTensor: tensor.pin_memory() return tensor.cuda() else: return tensor def cuda_var(self, tensor): return cuda_var(tensor, self.is_cuda, self.cuda_device) # Forward pass for training (with batch optimizations def sup_loss_on_batch(self, batch, eval): self.prof.tick("out") action_loss_total = Variable( empty_float_tensor([1], self.is_cuda, self.cuda_device)) if batch is None: print("Skipping None Batch") return action_loss_total actions = self.maybe_cuda(batch["actions"]) states = self.maybe_cuda(batch["states"]) firstseg_mask = batch["firstseg_mask"] # Auxiliary labels traj_ground_truth_select = self.maybe_cuda(batch["traj_ground_truth"]) # stops = self.maybe_cuda(batch["stops"]) metadata = batch["md"] batch_size = actions.size(0) count = 0 # Loop thru batch for b in range(batch_size): seg_idx = -1 self.reset() self.prof.tick("out") b_seq_len = len_until_nones(metadata[b]) # TODO: Generalize this # Slice the data according to the sequence length b_metadata = metadata[b][:b_seq_len] b_actions = actions[b][:b_seq_len] b_traj_ground_truth_select = traj_ground_truth_select[b] b_states = states[b][:b_seq_len] self.keep_inputs("traj_gt_global_select", b_traj_ground_truth_select) #b_firstseg = get_obs_mask_segstart(b_metadata) b_firstseg = firstseg_mask[b][:b_seq_len] # ---------------------------------------------------------------------------- # Optional Auxiliary Inputs # ---------------------------------------------------------------------------- gtsize = list(b_traj_ground_truth_select.size())[1:] b_poses = self.cam_poses_from_states(b_states) # TODO: These source and dest should go as arguments to get_maps (in forward pass not params) transformer = MapTransformerBase( source_map_size=self.params["global_map_size"], world_size=self.params["world_size_px"], dest_map_size=self.params["local_map_size"]) self.maybe_cuda(transformer) transformer.set_maps(b_traj_ground_truth_select, None) traj_gt_local_select, _ = transformer.get_maps(b_poses) self.keep_inputs("traj_gt_r_select", traj_gt_local_select) self.keep_inputs("traj_gt_w_select", b_traj_ground_truth_select) # ---------------------------------------------------------------------------- self.prof.tick("inputs") actions = self(traj_gt_local_select, firstseg=b_firstseg) action_losses, _ = self.action_loss(b_actions, actions, batchreduce=False) action_losses = self.action_loss.batch_reduce_loss(action_losses) action_loss = self.action_loss.reduce_loss(action_losses) action_loss_total = action_loss count += b_seq_len self.prof.tick("loss") action_loss_avg = action_loss_total / (count + 1e-9) prefix = self.model_name + ("/eval" if eval else "/train") self.writer.add_scalar(prefix + "/action_loss", action_loss_avg.data.cpu()[0], self.get_iter()) self.prof.tick("out") prefix = self.model_name + ("/eval" if eval else "/train") self.writer.add_dict(prefix, get_current_meters(), self.get_iter()) self.inc_iter() self.prof.tick("summaries") self.prof.loop() self.prof.print_stats(1) return action_loss_avg def get_dataset(self, data=None, envs=None, dataset_name=None, eval=False): # TODO: Maybe use eval here data_sources = [] data_sources.append(aup.PROVIDER_TRAJECTORY_GROUND_TRUTH_STATIC) return SegmentDataset(data=data, env_list=envs, dataset_name=dataset_name, aux_provider_names=data_sources, segment_level=True)
class ModelTrajectoryTopDown(ModuleWithAuxiliaries): def __init__(self, run_name="", model_class=MODEL_RSS, aux_class_features=False, aux_grounding_features=False, aux_class_map=False, aux_grounding_map=False, aux_goal_map=False, aux_lang=False, aux_traj=False, rot_noise=False, pos_noise=False): super(ModelTrajectoryTopDown, self).__init__() self.model_name = "sm_trajectory" + str(model_class) self.model_class = model_class print("Init model of type: ", str(model_class)) self.run_name = run_name self.writer = LoggingSummaryWriter(log_dir="runs/" + run_name) self.params = get_current_parameters()["Model"] self.aux_weights = get_current_parameters()["AuxWeights"] self.prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE) self.iter = nn.Parameter(torch.zeros(1), requires_grad=False) # Auxiliary Objectives self.use_aux_class_features = aux_class_features self.use_aux_grounding_features = aux_grounding_features self.use_aux_class_on_map = aux_class_map self.use_aux_grounding_on_map = aux_grounding_map self.use_aux_goal_on_map = aux_goal_map self.use_aux_lang = aux_lang self.use_aux_traj_on_map = aux_traj self.use_aux_reg_map = self.aux_weights["regularize_map"] self.use_rot_noise = rot_noise self.use_pos_noise = pos_noise # Path-pred FPV model definition # -------------------------------------------------------------------------------------------------------------- self.img_to_features_w = FPVToGlobalMap( source_map_size=self.params["global_map_size"], world_size_px=self.params["world_size_px"], world_size=self.params["world_size_m"], res_channels=self.params["resnet_channels"], map_channels=self.params["feature_channels"], img_w=self.params["img_w"], img_h=self.params["img_h"], img_dbg=IMG_DBG) self.map_accumulator_w = LeakyIntegratorGlobalMap(source_map_size=self.params["global_map_size"], world_in_map_size=self.params["world_size_px"]) # Pre-process the accumulated map to do language grounding if necessary - in the world reference frame if self.use_aux_grounding_on_map and not self.use_aux_grounding_features: self.map_processor_a_w = LangFilterMapProcessor( source_map_size=self.params["global_map_size"], world_size=self.params["world_size_px"], embed_size=self.params["emb_size"], in_channels=self.params["feature_channels"], out_channels=self.params["relevance_channels"], spatial=False, cat_out=True) else: self.map_processor_a_w = IdentityMapProcessor(source_map_size=self.params["global_map_size"], world_size=self.params["world_size_px"]) if self.use_aux_goal_on_map: self.map_processor_b_r = LangFilterMapProcessor(source_map_size=self.params["local_map_size"], world_size=self.params["world_size_px"], embed_size=self.params["emb_size"], in_channels=self.params["relevance_channels"], out_channels=self.params["goal_channels"], spatial=True, cat_out=True) else: self.map_processor_b_r = IdentityMapProcessor(source_map_size=self.params["local_map_size"], world_size=self.params["world_size_px"]) pred_channels = self.params["goal_channels"] + self.params["relevance_channels"] # Common # -------------------------------------------------------------------------------------------------------------- # Sentence Embedding self.sentence_embedding = SentenceEmbeddingSimple( self.params["word_emb_size"], self.params["emb_size"], self.params["emb_layers"]) self.map_transform_w_to_r = MapTransformerBase(source_map_size=self.params["global_map_size"], dest_map_size=self.params["local_map_size"], world_size=self.params["world_size_px"]) self.map_transform_r_to_w = MapTransformerBase(source_map_size=self.params["local_map_size"], dest_map_size=self.params["global_map_size"], world_size=self.params["world_size_px"]) # Batch select is used to drop and forget semantic maps at those timestaps that we're not planning in self.batch_select = MapBatchSelect() # Since we only have path predictions for some timesteps (the ones not dropped above), we use this to fill # in the missing pieces by reorienting the past trajectory prediction into the frame of the current timestep self.map_batch_fill_missing = MapBatchFillMissing(self.params["local_map_size"], self.params["world_size_px"]) # Passing true to freeze will freeze these weights regardless of whether they've been explicitly reloaded or not enable_weight_saving(self.sentence_embedding, "sentence_embedding", alwaysfreeze=False) # Output an action given the global semantic map if self.params["map_to_action"] == "downsample2": self.map_to_action = EgoMapToActionTriplet( map_channels=self.params["map_to_act_channels"], map_size=self.params["local_map_size"], other_features_size=self.params["emb_size"]) elif self.params["map_to_action"] == "cropped": self.map_to_action = CroppedMapToActionTriplet( map_channels=self.params["map_to_act_channels"], map_size=self.params["local_map_size"], other_features_size=self.params["emb_size"] ) # Don't freeze the trajectory to action weights, because it will be pre-trained during path-prediction training # and finetuned on all timesteps end-to-end enable_weight_saving(self.map_to_action, "map_to_action", alwaysfreeze=False, neverfreeze=True) # Auxiliary Objectives # -------------------------------------------------------------------------------------------------------------- # We add all auxiliaries that are necessary. The first argument is the auxiliary name, followed by parameters, # followed by variable number of names of inputs. ModuleWithAuxiliaries will automatically collect these inputs # that have been saved with keep_auxiliary_input() during execution if aux_class_features: self.add_auxiliary(ClassAuxiliary2D("aux_class", None, self.params["feature_channels"], self.params["num_landmarks"], self.params["dropout"], "fpv_features", "lm_pos_fpv", "lm_indices")) if aux_grounding_features: self.add_auxiliary(ClassAuxiliary2D("aux_ground", None, self.params["relevance_channels"], 2, self.params["dropout"], "fpv_features_g", "lm_pos_fpv", "lm_mentioned")) if aux_class_map: self.add_auxiliary(ClassAuxiliary2D("aux_class_map", self.params["world_size_px"], self.params["feature_channels"], self.params["num_landmarks"], self.params["dropout"], "map_s_w_select", "lm_pos_map_select", "lm_indices_select")) if aux_grounding_map: self.add_auxiliary(ClassAuxiliary2D("aux_grounding_map", self.params["world_size_px"], self.params["relevance_channels"], 2, self.params["dropout"], "map_a_w_select", "lm_pos_map_select", "lm_mentioned_select")) if aux_goal_map: self.add_auxiliary(GoalAuxiliary2D("aux_goal_map", self.params["goal_channels"], self.params["world_size_px"], "map_b_w", "goal_pos_map")) # RSS model uses templated data for landmark and side prediction if self.use_aux_lang and self.params["templates"]: self.add_auxiliary(ClassAuxiliary("aux_lang_lm", self.params["emb_size"], self.params["num_landmarks"], 1, "sentence_embed", "lm_mentioned_tplt")) self.add_auxiliary(ClassAuxiliary("aux_lang_side", self.params["emb_size"], self.params["num_sides"], 1, "sentence_embed", "side_mentioned_tplt")) # CoRL model uses alignment-model groundings elif self.use_aux_lang: # one output for each landmark, 2 classes per output. This is for finetuning, so use the embedding that's gonna be fine tuned self.add_auxiliary(ClassAuxiliary("aux_lang_lm_nl", self.params["emb_size"], 2, self.params["num_landmarks"], "sentence_embed", "lang_lm_mentioned")) if self.use_aux_traj_on_map: self.add_auxiliary(PathAuxiliary2D("aux_path", "map_b_r_select", "traj_gt_r_select")) if self.use_aux_reg_map: self.add_auxiliary(FeatureRegularizationAuxiliary2D("aux_regularize_features", None, "l1", "map_s_w_select", "lm_pos_map_select")) self.goal_good_criterion = GoalPredictionGoodCriterion(ok_distance=3.2) self.goal_acc_meter = MovingAverageMeter(10) self.print_auxiliary_info() self.action_loss = ActionLoss() self.env_id = None self.prev_instruction = None self.seq_step = 0 # TODO: Try to hide these in a superclass or something. They take up a lot of space: def cuda(self, device=None): ModuleWithAuxiliaries.cuda(self, device) self.sentence_embedding.cuda(device) self.map_accumulator_w.cuda(device) self.map_processor_a_w.cuda(device) self.map_processor_b_r.cuda(device) self.img_to_features_w.cuda(device) self.map_to_action.cuda(device) self.action_loss.cuda(device) self.map_batch_fill_missing.cuda(device) self.map_transform_w_to_r.cuda(device) self.map_transform_r_to_w.cuda(device) self.batch_select.cuda(device) self.map_batch_fill_missing.cuda(device) return self def get_iter(self): return int(self.iter.data[0]) def inc_iter(self): self.iter += 1 def init_weights(self): self.img_to_features_w.init_weights() self.map_accumulator_w.init_weights() self.sentence_embedding.init_weights() self.map_to_action.init_weights() self.map_processor_a_w.init_weights() self.map_processor_b_r.init_weights() def reset(self): # TODO: This is error prone. Create a class StatefulModule, iterate submodules and reset all stateful modules super(ModelTrajectoryTopDown, self).reset() self.sentence_embedding.reset() self.img_to_features_w.reset() self.map_accumulator_w.reset() self.map_processor_a_w.reset() self.map_processor_b_r.reset() self.map_transform_w_to_r.reset() self.map_transform_r_to_w.reset() self.map_batch_fill_missing.reset() self.prev_instruction = None def setEnvContext(self, context): print("Set env context to: " + str(context)) self.env_id = context["env_id"] def save_viz(self, images_in): imsave(get_viz_dir() + "fpv_" + str(self.seq_step) + ".png", images_in) features_cam = self.get_inputs_batch("fpv_features")[-1, 0, 0:3] save_tensor_as_img(features_cam, "F_c", self.env_id) feature_map_torch = self.get_inputs_batch("f_w")[-1, 0, 0:3] save_tensor_as_img(feature_map_torch, "F_w", self.env_id) coverage_map_torch = self.get_inputs_batch("m_w")[-1, 0, 0:3] save_tensor_as_img(coverage_map_torch, "M_w", self.env_id) semantic_map_torch = self.get_inputs_batch("map_s_w_select")[-1, 0, 0:3] save_tensor_as_img(semantic_map_torch, "S_w", self.env_id) relmap_torch = self.get_inputs_batch("map_a_w_select")[-1, 0, 0:3] save_tensor_as_img(relmap_torch, "R_w", self.env_id) relmap_r_torch = self.get_inputs_batch("map_a_r_select")[-1, 0, 0:3] save_tensor_as_img(relmap_r_torch, "R_r", self.env_id) goalmap_torch = self.get_inputs_batch("map_b_w_select")[-1, 0, 0:3] save_tensor_as_img(goalmap_torch, "G_w", self.env_id) goalmap_r_torch = self.get_inputs_batch("map_b_r_select")[-1, 0, 0:3] save_tensor_as_img(goalmap_r_torch, "G_r", self.env_id) action = self.get_inputs_batch("action")[-1].data.cpu().squeeze().numpy() action_fname = self.get_viz_dir() + "action_" + str(self.seq_step) + ".png" Presenter().save_action(action, action_fname, "") def get_action(self, state, instruction): """ Given a DroneState (from PomdpInterface) and instruction, produce a numpy 4D action (x, y, theta, pstop) :param state: DroneState object with the raw image from the simulator :param instruction: Tokenized instruction given the corpus #TODO: Absorb corpus within model :return: """ # TODO: Simplify this self.eval() images_np_pure = state.image state_np = state.state #print("Act: " + debug_untokenize_instruction(instruction)) images_np = standardize_image(images_np_pure) image_fpv = Variable(none_padded_seq_to_tensor([images_np])) state = Variable(none_padded_seq_to_tensor([state_np])) # Add the batch dimension first_step = True if instruction == self.prev_instruction: first_step = False self.prev_instruction = instruction img_in_t = image_fpv img_in_t.volatile = True instr_len = [len(instruction)] if instruction is not None else None instruction = torch.LongTensor(instruction).unsqueeze(0) instruction = cuda_var(instruction, self.is_cuda, self.cuda_device) state.volatile = True if self.is_cuda: if img_in_t is not None: img_in_t = img_in_t.cuda(self.cuda_device) state = state.cuda(self.cuda_device) step_enc = None plan_now = None self.seq_step += 1 action = self(img_in_t, state, instruction, instr_len, plan=plan_now, pos_enc=step_enc) # Save materials for paper and presentation if False: self.save_viz(images_np_pure) output_action = action.squeeze().data.cpu().numpy() stop_prob = output_action[3] output_stop = 1 if stop_prob > 0.5 else 0 output_action[3] = output_stop return output_action def deterministic_action(self, action_mean, action_std, stop_prob): batch_size = action_mean.size(0) action = Variable(empty_float_tensor((batch_size, 4), self.is_cuda, self.cuda_device)) action[:, 0:3] = action_mean[:, 0:3] action[:, 3] = stop_prob return action def sample_action(self, action_mean, action_std, stop_prob): action = torch.normal(action_mean, action_std) stop = torch.bernoulli(stop_prob) return action, stop # This is called before beginning an execution sequence def start_sequence(self): self.seq_step = 0 self.reset() print("RESETTED!") return # TODO: Move this somewhere and standardize def cam_poses_from_states(self, states): cam_pos = states[:, 9:12] cam_rot = states[:, 12:16] pos_variance = 0 rot_variance = 0 if self.use_pos_noise: pos_variance = self.params["noisy_pos_variance"] if self.use_rot_noise: rot_variance = self.params["noisy_rot_variance"] pose = Pose(cam_pos, cam_rot) if self.use_pos_noise or self.use_rot_noise: pose = get_noisy_poses_torch(pose, pos_variance, rot_variance, cuda=self.is_cuda, cuda_device=self.cuda_device) return pose def forward(self, images, states, instructions, instr_lengths, has_obs=None, plan=None, save_maps_only=False, pos_enc=None, noisy_poses=None): """ :param images: BxCxHxW batch of images (observations) :param states: BxK batch of drone states :param instructions: BxM LongTensor where M is the maximum length of any instruction :param instr_lengths: list of len B of integers, indicating length of each instruction :param has_obs: list of booleans of length B indicating whether the given element in the sequence has an observation :param yield_semantic_maps: If true, will not compute actions (full model), but return the semantic maps that were built along the way in response to the images. This is ugly, but allows code reuse :return: """ cam_poses = self.cam_poses_from_states(states) g_poses = None#[None for pose in cam_poses] self.prof.tick("out") #print("Trn: " + debug_untokenize_instruction(instructions[0].data[:instr_lengths[0]])) # Calculate the instruction embedding if instructions is not None: # TODO: Take batch of instructions and their lengths, return batch of embeddings. Store the last one as internal state sent_embeddings = self.sentence_embedding(instructions, instr_lengths) self.keep_inputs("sentence_embed", sent_embeddings) else: sent_embeddings = self.sentence_embedding.get() self.prof.tick("embed") # Extract and project features onto the egocentric frame for each image features_w, coverages_w = self.img_to_features_w(images, cam_poses, sent_embeddings, self, show="") self.prof.tick("img_to_map_frame") self.keep_inputs("f_w", features_w) self.keep_inputs("m_w", coverages_w) # Accumulate the egocentric features in a global map maps_w = self.map_accumulator_w(features_w, coverages_w, add_mask=has_obs, show="acc" if IMG_DBG else "") map_poses_w = g_poses # TODO: Maybe keep maps_w if necessary #self.keep_inputs("map_sm_local", maps_m) self.prof.tick("map_accumulate") # Throw away those timesteps that don't correspond to planning timesteps maps_w_select, map_poses_w_select, cam_poses_select, noisy_poses_select, _, sent_embeddings_select, pos_enc = \ self.batch_select(maps_w, map_poses_w, cam_poses, noisy_poses, None, sent_embeddings, pos_enc, plan) # Only process the maps on planning timesteps if len(maps_w_select) > 0: self.keep_inputs("map_s_w_select", maps_w_select) self.prof.tick("batch_select") # Process the map via the two map_procesors # Do grounding of objects in the map chosen to do so maps_w_select, map_poses_w_select = self.map_processor_a_w(maps_w_select, sent_embeddings_select, map_poses_w_select, show="") self.keep_inputs("map_a_w_select", maps_w_select) self.prof.tick("map_proc_gnd") self.map_transform_w_to_r.set_maps(maps_w_select, map_poses_w_select) maps_m_select, map_poses_m_select = self.map_transform_w_to_r.get_maps(cam_poses_select) self.keep_inputs("map_a_r_select", maps_w_select) self.prof.tick("transform_w_to_r") self.keep_inputs("map_a_r_perturbed_select", maps_m_select) self.prof.tick("map_perturb") # Include positional encoding for path prediction if pos_enc is not None: sent_embeddings_pp = torch.cat([sent_embeddings_select, pos_enc.unsqueeze(1)], dim=1) else: sent_embeddings_pp = sent_embeddings_select # Process the map via the two map_procesors (e.g. predict the trajectory that we'll be taking) maps_m_select, map_poses_m_select = self.map_processor_b_r(maps_m_select, sent_embeddings_pp, map_poses_m_select) self.keep_inputs("map_b_r_select", maps_m_select) if True: self.map_transform_r_to_w.set_maps(maps_m_select, map_poses_m_select) maps_b_w_select, _ = self.map_transform_r_to_w.get_maps(None) self.keep_inputs("map_b_w_select", maps_b_w_select) self.prof.tick("map_proc_b") else: maps_m_select = None maps_m, map_poses_m = self.map_batch_fill_missing(maps_m_select, cam_poses, plan, show="") self.keep_inputs("map_b_r", maps_m) self.prof.tick("map_fill_missing") # Keep global maps for auxiliary objectives if necessary if self.input_required("map_b_w"): maps_b, _ = self.map_processor_b_r.get_maps(g_poses) self.keep_inputs("map_b_w", maps_b) self.prof.tick("keep_global_maps") if run_metadata.IS_ROLLOUT: pass #Presenter().show_image(maps_m.data[0, 0:3], "plan_map_now", torch=True, scale=4, waitkey=1) #Presenter().show_image(maps_w.data[0, 0:3], "sm_map_now", torch=True, scale=4, waitkey=1) self.prof.tick("viz") # Output the final action given the processed map action_pred = self.map_to_action(maps_m, sent_embeddings) out_action = self.deterministic_action(action_pred[:, 0:3], None, action_pred[:, 3]) self.keep_inputs("action", out_action) self.prof.tick("map_to_action") return out_action # TODO: The below two methods seem to do the same thing def maybe_cuda(self, tensor): if self.is_cuda: return tensor.cuda() else: return tensor def cuda_var(self, tensor): return cuda_var(tensor, self.is_cuda, self.cuda_device) # Forward pass for training (with batch optimizations def sup_loss_on_batch(self, batch, eval): self.prof.tick("out") action_loss_total = Variable(empty_float_tensor([1], self.is_cuda, self.cuda_device)) if batch is None: print("Skipping None Batch") return action_loss_total images = self.maybe_cuda(batch["images"]) instructions = self.maybe_cuda(batch["instr"]) instr_lengths = batch["instr_len"] states = self.maybe_cuda(batch["states"]) actions = self.maybe_cuda(batch["actions"]) # Auxiliary labels lm_pos_fpv = batch["lm_pos_fpv"] lm_pos_map = batch["lm_pos_map"] lm_indices = batch["lm_indices"] goal_pos_map = batch["goal_loc"] TEMPLATES = True if TEMPLATES: lm_mentioned_tplt = batch["lm_mentioned_tplt"] side_mentioned_tplt = batch["side_mentioned_tplt"] else: lm_mentioned = batch["lm_mentioned"] lang_lm_mentioned = batch["lang_lm_mentioned"] # stops = self.maybe_cuda(batch["stops"]) masks = self.maybe_cuda(batch["masks"]) # This is the first-timestep metadata metadata = batch["md"] seq_len = images.size(1) batch_size = images.size(0) count = 0 correct_goal_count = 0 goal_count = 0 # Loop thru batch for b in range(batch_size): seg_idx = -1 self.reset() self.prof.tick("out") b_seq_len = len_until_nones(metadata[b]) # TODO: Generalize this # Slice the data according to the sequence length b_metadata = metadata[b][:b_seq_len] b_images = images[b][:b_seq_len] b_instructions = instructions[b][:b_seq_len] b_instr_len = instr_lengths[b][:b_seq_len] b_states = states[b][:b_seq_len] b_actions = actions[b][:b_seq_len] b_lm_pos_fpv = lm_pos_fpv[b][:b_seq_len] b_lm_pos_map = lm_pos_map[b][:b_seq_len] b_lm_indices = lm_indices[b][:b_seq_len] b_goal_pos = goal_pos_map[b][:b_seq_len] if not TEMPLATES: b_lang_lm_mentioned = lang_lm_mentioned[b][:b_seq_len] b_lm_mentioned = lm_mentioned[b][:b_seq_len] b_lm_pos_map = [self.cuda_var(s.long()) if s is not None else None for s in b_lm_pos_map] b_lm_pos_fpv = [self.cuda_var((s / RESNET_FACTOR).long()) if s is not None else None for s in b_lm_pos_fpv] b_lm_indices = [self.cuda_var(s) if s is not None else None for s in b_lm_indices] b_goal_pos = self.cuda_var(b_goal_pos) if not TEMPLATES: b_lang_lm_mentioned = self.cuda_var(b_lang_lm_mentioned) b_lm_mentioned = [self.cuda_var(s) if s is not None else None for s in b_lm_mentioned] # TODO: Figure out how to keep these properly. Perhaps as a whole batch is best # TODO: Introduce a key-value store (encapsulate instead of inherit) self.keep_inputs("lm_pos_fpv", b_lm_pos_fpv) self.keep_inputs("lm_pos_map", b_lm_pos_map) self.keep_inputs("lm_indices", b_lm_indices) self.keep_inputs("goal_pos_map", b_goal_pos) if not TEMPLATES: self.keep_inputs("lang_lm_mentioned", b_lang_lm_mentioned) self.keep_inputs("lm_mentioned", b_lm_mentioned) # TODO: Abstract all of these if-elses in a modular way once we know which ones are necessary if TEMPLATES: b_lm_mentioned_tplt = lm_mentioned_tplt[b][:b_seq_len] b_side_mentioned_tplt = side_mentioned_tplt[b][:b_seq_len] b_side_mentioned_tplt = self.cuda_var(b_side_mentioned_tplt) b_lm_mentioned_tplt = self.cuda_var(b_lm_mentioned_tplt) self.keep_inputs("lm_mentioned_tplt", b_lm_mentioned_tplt) self.keep_inputs("side_mentioned_tplt", b_side_mentioned_tplt) b_lm_mentioned = b_lm_mentioned_tplt b_obs_mask = [True for _ in range(b_seq_len)] b_plan_mask = [True for _ in range(b_seq_len)] b_plan_mask_t_cpu = torch.Tensor(b_plan_mask) == True b_plan_mask_t = self.maybe_cuda(b_plan_mask_t_cpu) b_pos_enc = None # ---------------------------------------------------------------------------- # Optional Auxiliary Inputs # ---------------------------------------------------------------------------- if self.input_required("lm_pos_map_select"): b_lm_pos_map_select = [lm_pos for i,lm_pos in enumerate(b_lm_pos_map) if b_plan_mask[i]] self.keep_inputs("lm_pos_map_select", b_lm_pos_map_select) if self.input_required("lm_indices_select"): b_lm_indices_select = [lm_idx for i,lm_idx in enumerate(b_lm_indices) if b_plan_mask[i]] self.keep_inputs("lm_indices_select", b_lm_indices_select) if self.input_required("lm_mentioned_select"): b_lm_mentioned_select = [lm_m for i,lm_m in enumerate(b_lm_mentioned) if b_plan_mask[i]] self.keep_inputs("lm_mentioned_select", b_lm_mentioned_select) # ---------------------------------------------------------------------------- self.prof.tick("inputs") actions = self(b_images, b_states, b_instructions, b_instr_len, has_obs=b_obs_mask, plan=b_plan_mask, pos_enc=b_pos_enc) action_losses, _ = self.action_loss(b_actions, actions, batchreduce=False) self.prof.tick("call") action_losses = self.action_loss.batch_reduce_loss(action_losses) action_loss = self.action_loss.reduce_loss(action_losses) action_loss_total = action_loss count += b_seq_len self.prof.tick("loss") action_loss_avg = action_loss_total / (count + 1e-9) self.prof.tick("out") # Doing this in the end (outside of se aux_losses = self.calculate_aux_loss(reduce_average=True) aux_loss = self.combine_aux_losses(aux_losses, self.aux_weights) prefix = self.model_name + ("/eval" if eval else "/train") self.writer.add_dict(prefix, get_current_meters(), self.get_iter()) self.writer.add_dict(prefix, aux_losses, self.get_iter()) self.writer.add_scalar(prefix + "/action_loss", action_loss_avg.data.cpu()[0], self.get_iter()) # TODO: Log value here self.writer.add_scalar(prefix + "/goal_accuracy", self.goal_acc_meter.get(), self.get_iter()) self.prof.tick("auxiliaries") total_loss = action_loss_avg + aux_loss self.inc_iter() self.prof.tick("summaries") self.prof.loop() self.prof.print_stats(1) return total_loss def get_dataset(self, data=None, envs=None, dataset_name=None, eval=False): # TODO: Maybe use eval here #if self.fpv: data_sources = [] # If we're running auxiliary objectives, we need to include the data sources for the auxiliary labels #if self.use_aux_class_features or self.use_aux_class_on_map or self.use_aux_grounding_features or self.use_aux_grounding_on_map: #if self.use_aux_goal_on_map: data_sources.append(aup.PROVIDER_LM_POS_DATA) data_sources.append(aup.PROVIDER_GOAL_POS) #data_sources.append(aup.PROVIDER_LANDMARKS_MENTIONED) data_sources.append(aup.PROVIDER_LANG_TEMPLATE) #if self.use_rot_noise or self.use_pos_noise: # data_sources.append(aup.PROVIDER_POSE_NOISE) return SegmentDataset(data=data, env_list=envs, dataset_name=dataset_name, aux_provider_names=data_sources, segment_level=True)
def __init__(self, run_name="", model_instance_name="only"): super(PVN_Stage2_ActorCritic, self).__init__() self.model_name = "pvn_stage2_ac" self.run_name = run_name self.instance_name = model_instance_name self.writer = LoggingSummaryWriter(log_dir=f"{get_logging_dir()}/runs/{run_name}/{self.instance_name}") self.params_s1 = get_current_parameters()["ModelPVN"]["Stage1"] self.params_s2 = get_current_parameters()["ModelPVN"]["Stage2"] self.params = get_current_parameters()["ModelPVN"]["ActorCritic"] self.oob = self.params_s1.get("clip_observability") self.ignore_struct = self.params.get("ignore_structured_input", False) self.prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE) self.iter = nn.Parameter(torch.zeros(1), requires_grad=False) self.tensor_store = KeyTensorStore() # Common # -------------------------------------------------------------------------------------------------------------- # Wrap the Stage1 model so that it becomes invisible to PyTorch, get_parameters etc, and doesn't get optimized self.map_transform_w_to_r = MapTransformer(source_map_size=self.params_s1["global_map_size"], dest_map_size=self.params_s1["local_map_size"], world_size_px=self.params_s1["world_size_px"], world_size_m=self.params_s1["world_size_m"]) self.action_base = PVN_Stage2_RLBase(map_channels=self.params_s2["map_to_act_channels"], map_struct_channels=self.params_s2["map_structure_channels"], crop_size=self.params_s2["crop_size"], map_size=self.params_s1["local_map_size"], h1=self.params["h1"], h2=self.params["h2"], structure_h1=self.params["structure_h1"], obs_dim=self.params["obs_dim"], name="action") self.value_base = PVN_Stage2_RLBase(map_channels=self.params_s2["map_to_act_channels"], map_struct_channels=self.params_s2["map_structure_channels"], crop_size=self.params_s2["crop_size"], map_size=self.params_s1["local_map_size"], h1=self.params["h1"], h2=self.params["h2"], structure_h1=self.params["structure_h1"], obs_dim=self.params["obs_dim"], name="value") self.action_head = PVN_Stage2_ActionHead(h2=self.params["h2"]) self.value_head = PVN_Stage2_ValueHead(h2=self.params["h2"]) self.spatialsoftmax = SpatialSoftmax2d() self.batch_select = MapBatchSelect() self.gt_fill_missing = MapBatchFillMissing( self.params_s1["local_map_size"], self.params_s1["world_size_px"], self.params_s1["world_size_m"]) self.env_id = None self.seg_idx = None self.prev_instruction = None self.seq_step = 0 self.get_act_start_pose = None self.gt_labels = None # PPO interface: self.is_recurrent = False
class PVN_Stage2_ActorCritic(nn.Module): def __init__(self, run_name="", model_instance_name="only"): super(PVN_Stage2_ActorCritic, self).__init__() self.model_name = "pvn_stage2_ac" self.run_name = run_name self.instance_name = model_instance_name self.writer = LoggingSummaryWriter(log_dir=f"{get_logging_dir()}/runs/{run_name}/{self.instance_name}") self.params_s1 = get_current_parameters()["ModelPVN"]["Stage1"] self.params_s2 = get_current_parameters()["ModelPVN"]["Stage2"] self.params = get_current_parameters()["ModelPVN"]["ActorCritic"] self.oob = self.params_s1.get("clip_observability") self.ignore_struct = self.params.get("ignore_structured_input", False) self.prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE) self.iter = nn.Parameter(torch.zeros(1), requires_grad=False) self.tensor_store = KeyTensorStore() # Common # -------------------------------------------------------------------------------------------------------------- # Wrap the Stage1 model so that it becomes invisible to PyTorch, get_parameters etc, and doesn't get optimized self.map_transform_w_to_r = MapTransformer(source_map_size=self.params_s1["global_map_size"], dest_map_size=self.params_s1["local_map_size"], world_size_px=self.params_s1["world_size_px"], world_size_m=self.params_s1["world_size_m"]) self.action_base = PVN_Stage2_RLBase(map_channels=self.params_s2["map_to_act_channels"], map_struct_channels=self.params_s2["map_structure_channels"], crop_size=self.params_s2["crop_size"], map_size=self.params_s1["local_map_size"], h1=self.params["h1"], h2=self.params["h2"], structure_h1=self.params["structure_h1"], obs_dim=self.params["obs_dim"], name="action") self.value_base = PVN_Stage2_RLBase(map_channels=self.params_s2["map_to_act_channels"], map_struct_channels=self.params_s2["map_structure_channels"], crop_size=self.params_s2["crop_size"], map_size=self.params_s1["local_map_size"], h1=self.params["h1"], h2=self.params["h2"], structure_h1=self.params["structure_h1"], obs_dim=self.params["obs_dim"], name="value") self.action_head = PVN_Stage2_ActionHead(h2=self.params["h2"]) self.value_head = PVN_Stage2_ValueHead(h2=self.params["h2"]) self.spatialsoftmax = SpatialSoftmax2d() self.batch_select = MapBatchSelect() self.gt_fill_missing = MapBatchFillMissing( self.params_s1["local_map_size"], self.params_s1["world_size_px"], self.params_s1["world_size_m"]) self.env_id = None self.seg_idx = None self.prev_instruction = None self.seq_step = 0 self.get_act_start_pose = None self.gt_labels = None # PPO interface: self.is_recurrent = False def make_picklable(self): self.writer = DummySummaryWriter() def init_weights(self): self.action_base.init_weights() self.value_base.init_weights() self.action_head.init_weights() self.value_head.init_weights() def get_iter(self): return int(self.iter.data[0]) def inc_iter(self): self.iter += 1 def reset(self): self.tensor_store.reset() self.gt_fill_missing.reset() def setEnvContext(self, context): print("Set env context to: " + str(context)) self.env_id = context["env_id"] def cam_poses_from_states(self, states): cam_pos = states[:, 9:12] cam_rot = states[:, 12:16] pose = Pose(cam_pos, cam_rot) return pose def forward(self, v_dist_r, map_structure_r, eval=False, summarize=False): ACPROF = False prof = SimpleProfiler(print=ACPROF, torch_sync=ACPROF) if isinstance(v_dist_r, list): inners = torch.cat([m.inner_distribution for m in v_dist_r], dim=0) outers = torch.cat([m.outer_prob_mass for m in v_dist_r], dim=0) v_dist_r = Partial2DDistribution(inners, outers) map_structure_r = torch.stack(map_structure_r, dim=0) if self.ignore_struct: map_structure_r = torch.zeros_like(map_structure_r) prof.tick("ac:inputs") avec = self.action_base(v_dist_r, map_structure_r) prof.tick("ac:networks - action_base") vvec = self.value_base(v_dist_r, map_structure_r) prof.tick("ac:networks - value_base") action_scores = self.action_head(avec) prof.tick("ac:networks - action_head") value_pred = self.value_head(vvec) prof.tick("ac:networks - value head") xvel_mean = action_scores[:, 0] xvel_std = F.softplus(action_scores[:, 2]) xvel_dist = FixedNormal(xvel_mean, xvel_std) yawrate_mean = action_scores[:, 3] yawrate_std = F.softplus(action_scores[:, 5]) yawrate_dist = FixedNormal(yawrate_mean, yawrate_std) # Skew it towards not stopping in the beginning stop_logits = action_scores[:, 6] stop_dist = FixedBernoulli(logits=stop_logits) prof.tick("ac:distributions") prof.loop() prof.print_stats(1) return xvel_dist, yawrate_dist, stop_dist, value_pred def sample_action(self, xvel_dist, yawrate_dist, stop_dist): # Sample action from the predicted distributions xvel_sample = xvel_dist.sample() yawrate_sample = yawrate_dist.sample() stop = stop_dist.sample() return xvel_sample, yawrate_sample, stop def mode_action(self, xvel_dist, yawrate_dist, stop_dist): xvel_sample = xvel_dist.mode() yawrate_sample = yawrate_dist.mode() stop = stop_dist.mean return xvel_sample, yawrate_sample, stop def action_logprob(self, xvel_dist, yawrate_dist, stop_dist, xvel, yawrate, stop): xvel_logprob = xvel_dist.log_prob(xvel) yawrate_logprob = yawrate_dist.log_prob(yawrate) stop_logprob = stop_dist.log_prob(stop) return xvel_logprob, yawrate_logprob, stop_logprob def evaluate_actions(self, maps_r_batch, map_cov_r_batch, hidden_states_batch, masks_batch, actions_batch, global_step): xvel_dist, yawrate_dist, stop_dist, value_pred = self(maps_r_batch, map_cov_r_batch, summarize=True) # X-vel and yaw rate. Drop sideways velocity x_vel = actions_batch[:, 0] yawrate = actions_batch[:, 2] stops = actions_batch[:, 3] # Get action log-probabilities x_vel_log_probs, yawrate_log_probs, stop_log_probs = \ self.action_logprob(xvel_dist, yawrate_dist, stop_dist, x_vel, yawrate, stops) x_vel_entropy = xvel_dist.entropy().mean() yawrate_entropy = yawrate_dist.entropy().mean() stop_entropy = stop_dist.entropy().mean() entropy = x_vel_entropy + yawrate_entropy + stop_entropy log_probs = x_vel_log_probs + yawrate_log_probs + stop_log_probs i = self.get_iter() if i % 17 == 0: stop_probs = stop_dist.probs.detach().cpu().mean() self.writer.add_scalar(f"{self.model_name}/stopprob", stop_probs.item(), i) if ACT_DIST == "normal": x_vel_mean = xvel_dist.mean.detach().cpu().mean(dim=0) x_vel_std = xvel_dist.stddev.detach().cpu().mean(dim=0) yawrate_mean = yawrate_dist.mean.detach().cpu().mean(dim=0) yawrate_std = yawrate_dist.stddev.detach().cpu().mean(dim=0) self.writer.add_scalar(f"{self.model_name}/x_vel_mean", x_vel_mean.item(), i) self.writer.add_scalar(f"{self.model_name}/x_vel_std", x_vel_std.item(), i) self.writer.add_scalar(f"{self.model_name}/yawrate_mean", yawrate_mean.item(), i) self.writer.add_scalar(f"{self.model_name}/yawrate_std", yawrate_std.item(), i) elif ACT_DIST == "beta": x_vel_alpha = xvel_dist.concentration0.detach().cpu().mean(dim=0) x_vel_beta = xvel_dist.concentration1.detach().cpu().mean(dim=0) yawrate_alpha = yawrate_dist.concentration0.detach().cpu().mean(dim=0) yawrate_beta = yawrate_dist.concentration1.detach().cpu().mean(dim=0) self.writer.add_scalar(f"{self.model_name}/vel_x_alpha", x_vel_alpha.item(), i) self.writer.add_scalar(f"{self.model_name}/vel_x_beta", x_vel_beta.item(), i) self.writer.add_scalar(f"{self.model_name}/yaw_rate_alpha", yawrate_alpha.item(), i) self.writer.add_scalar(f"{self.model_name}/yaw_rate_beta", yawrate_beta.item(), i) self.inc_iter() return value_pred, log_probs, entropy, None def cuda_var(self, tensor): return tensor.to(next(self.parameters()).device)
def __init__(self, run_name="", domain="sim"): super(PVN_Stage1_Bidomain_Original, self).__init__() self.model_name = "pvn_stage1" self.run_name = run_name self.domain = domain self.writer = LoggingSummaryWriter( log_dir=f"{get_logging_dir()}/runs/{run_name}/{self.domain}") #self.writer = DummySummaryWriter() self.root_params = get_current_parameters()["ModelPVN"] self.params = self.root_params["Stage1"] self.use_aux = self.root_params["UseAux"] self.aux_weights = self.root_params["AuxWeights"] if self.params.get("weight_override"): aux_weights_override_name = "AuxWeightsRealOverride" if self.domain == "real" else "AuxWeightsSimOverride" aux_weights_override = self.root_params.get( aux_weights_override_name) if aux_weights_override: print( f"Overriding auxiliary weights for domain: {self.domain}") self.aux_weights = dict_merge(self.aux_weights, aux_weights_override) self.prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE) self.iter = nn.Parameter(torch.zeros(1), requires_grad=False) self.tensor_store = KeyTensorStore() self.losses = AuxiliaryLosses() # Auxiliary Objectives self.do_perturb_maps = self.params["perturb_maps"] print("Perturbing maps: ", self.do_perturb_maps) # Path-pred FPV model definition # -------------------------------------------------------------------------------------------------------------- self.num_feature_channels = self.params[ "feature_channels"] # + params["relevance_channels"] self.num_map_channels = self.params["pathpred_in_channels"] self.img_to_features_w = FPVToGlobalMap( source_map_size=self.params["global_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"], res_channels=self.params["resnet_channels"], map_channels=self.params["feature_channels"], img_w=self.params["img_w"], img_h=self.params["img_h"], cam_h_fov=self.params["cam_h_fov"], domain=domain, img_dbg=IMG_DBG) self.map_accumulator_w = LeakyIntegratorGlobalMap( source_map_size=self.params["global_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"]) self.add_init_pos_to_coverage = AddDroneInitPosToCoverage( world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"], map_size_px=self.params["local_map_size"]) # Pre-process the accumulated map to do language grounding if necessary - in the world reference frame self.map_processor_grounding = LangFilterMapProcessor( embed_size=self.params["emb_size"], in_channels=self.params["feature_channels"], out_channels=self.params["relevance_channels"], spatial=False, cat_out=False) ratio_prior_channels = self.params["feature_channels"] # Process the global accumulated map self.path_predictor_lingunet = RatioPathPredictor( self.params["lingunet"], prior_channels_in=self.params["feature_channels"], posterior_channels_in=self.params["pathpred_in_channels"], dual_head=self.params["predict_confidence"], compute_prior=self.params["compute_prior"], use_prior=self.params["use_prior_only"], oob=self.params["clip_observability"]) print("UNet Channels: " + str(self.num_map_channels)) print("Feature Channels: " + str(self.num_feature_channels)) # TODO:O Verify that config has the same randomization parameters (yaw, pos, etc) self.second_transform = self.do_perturb_maps or self.params[ "predict_in_start_frame"] # Sentence Embedding self.sentence_embedding = SentenceEmbeddingSimple( self.params["word_emb_size"], self.params["emb_size"], self.params["emb_layers"], self.params["emb_dropout"]) self.map_transform_local_to_local = MapTransformer( source_map_size=self.params["local_map_size"], dest_map_size=self.params["local_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"]) self.map_transform_global_to_local = MapTransformer( source_map_size=self.params["global_map_size"], dest_map_size=self.params["local_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"]) self.map_transform_local_to_global = MapTransformer( source_map_size=self.params["local_map_size"], dest_map_size=self.params["global_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"]) self.map_transform_s_to_p = self.map_transform_local_to_local self.map_transform_w_to_s = self.map_transform_global_to_local self.map_transform_w_to_r = self.map_transform_global_to_local self.map_transform_r_to_s = self.map_transform_local_to_local self.map_transform_r_to_w = self.map_transform_local_to_global self.map_transform_p_to_w = self.map_transform_local_to_global self.map_transform_p_to_r = self.map_transform_local_to_local # Batch select is used to drop and forget semantic maps at those timestaps that we're not planning in self.batch_select = MapBatchSelect() # Since we only have path predictions for some timesteps (the ones not dropped above), we use this to fill # in the missing pieces by reorienting the past trajectory prediction into the frame of the current timestep self.map_batch_fill_missing = MapBatchFillMissing( self.params["local_map_size"], self.params["world_size_px"], self.params["world_size_m"]) self.spatialsoftmax = SpatialSoftmax2d() self.visitation_softmax = VisitationSoftmax() #TODO:O Use CroppedMapToActionTriplet in Wrapper as Stage2 # Auxiliary Objectives # -------------------------------------------------------------------------------------------------------------- # We add all auxiliaries that are necessary. The first argument is the auxiliary name, followed by parameters, # followed by variable number of names of inputs. ModuleWithAuxiliaries will automatically collect these inputs # that have been saved with keep_auxiliary_input() during execution if self.use_aux["class_features"]: self.losses.add_auxiliary( ClassAuxiliary2D("class_features", self.params["feature_channels"], self.params["num_landmarks"], 0, "fpv_features", "lm_pos_fpv", "lm_indices")) if self.use_aux["grounding_features"]: self.losses.add_auxiliary( ClassAuxiliary2D("grounding_features", self.params["relevance_channels"], 2, 0, "fpv_features_g", "lm_pos_fpv", "lm_mentioned")) if self.use_aux["class_map"]: self.losses.add_auxiliary( ClassAuxiliary2D("class_map", self.params["feature_channels"], self.params["num_landmarks"], 0, "S_W_select", "lm_pos_map_select", "lm_indices_select")) if self.use_aux["grounding_map"]: self.losses.add_auxiliary( ClassAuxiliary2D("grounding_map", self.params["relevance_channels"], 2, 0, "R_W_select", "lm_pos_map_select", "lm_mentioned_select")) # CoRL model uses alignment-model groundings if self.use_aux["lang"]: # one output for each landmark, 2 classes per output. This is for finetuning, so use the embedding that's gonna be fine tuned self.losses.add_auxiliary( ClassAuxiliary("lang", self.params["emb_size"], 2, self.params["num_landmarks"], "sentence_embed", "lang_lm_mentioned")) if self.use_aux["regularize_map"]: self.losses.add_auxiliary( FeatureRegularizationAuxiliary2D("regularize_map", "l1", "S_W_select")) lossfunc = self.params["path_loss_function"] if self.params["clip_observability"]: self.losses.add_auxiliary( PathAuxiliary2D("visitation_dist", lossfunc, self.params["clip_observability"], "log_v_dist_s_select", "v_dist_s_ground_truth_select", "SM_S_select")) else: self.losses.add_auxiliary( PathAuxiliary2D("visitation_dist", lossfunc, self.params["clip_observability"], "log_v_dist_s_select", "v_dist_s_ground_truth_select", "SM_S_select")) self.goal_good_criterion = GoalPredictionGoodCriterion( ok_distance=self.params["world_size_px"] * 0.1) self.goal_acc_meter = MovingAverageMeter(10) self.visible_goal_acc_meter = MovingAverageMeter(10) self.invisible_goal_acc_meter = MovingAverageMeter(10) self.visible_goal_frac_meter = MovingAverageMeter(10) self.losses.print_auxiliary_info() self.total_goals = 0 self.correct_goals = 0 self.env_id = None self.env_img = None self.seg_idx = None self.prev_instruction = None self.seq_step = 0 self.should_save_path_overlays = False
class PVN_Stage1_Bidomain_Original(nn.Module): def __init__(self, run_name="", domain="sim"): super(PVN_Stage1_Bidomain_Original, self).__init__() self.model_name = "pvn_stage1" self.run_name = run_name self.domain = domain self.writer = LoggingSummaryWriter( log_dir=f"{get_logging_dir()}/runs/{run_name}/{self.domain}") #self.writer = DummySummaryWriter() self.root_params = get_current_parameters()["ModelPVN"] self.params = self.root_params["Stage1"] self.use_aux = self.root_params["UseAux"] self.aux_weights = self.root_params["AuxWeights"] if self.params.get("weight_override"): aux_weights_override_name = "AuxWeightsRealOverride" if self.domain == "real" else "AuxWeightsSimOverride" aux_weights_override = self.root_params.get( aux_weights_override_name) if aux_weights_override: print( f"Overriding auxiliary weights for domain: {self.domain}") self.aux_weights = dict_merge(self.aux_weights, aux_weights_override) self.prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE) self.iter = nn.Parameter(torch.zeros(1), requires_grad=False) self.tensor_store = KeyTensorStore() self.losses = AuxiliaryLosses() # Auxiliary Objectives self.do_perturb_maps = self.params["perturb_maps"] print("Perturbing maps: ", self.do_perturb_maps) # Path-pred FPV model definition # -------------------------------------------------------------------------------------------------------------- self.num_feature_channels = self.params[ "feature_channels"] # + params["relevance_channels"] self.num_map_channels = self.params["pathpred_in_channels"] self.img_to_features_w = FPVToGlobalMap( source_map_size=self.params["global_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"], res_channels=self.params["resnet_channels"], map_channels=self.params["feature_channels"], img_w=self.params["img_w"], img_h=self.params["img_h"], cam_h_fov=self.params["cam_h_fov"], domain=domain, img_dbg=IMG_DBG) self.map_accumulator_w = LeakyIntegratorGlobalMap( source_map_size=self.params["global_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"]) self.add_init_pos_to_coverage = AddDroneInitPosToCoverage( world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"], map_size_px=self.params["local_map_size"]) # Pre-process the accumulated map to do language grounding if necessary - in the world reference frame self.map_processor_grounding = LangFilterMapProcessor( embed_size=self.params["emb_size"], in_channels=self.params["feature_channels"], out_channels=self.params["relevance_channels"], spatial=False, cat_out=False) ratio_prior_channels = self.params["feature_channels"] # Process the global accumulated map self.path_predictor_lingunet = RatioPathPredictor( self.params["lingunet"], prior_channels_in=self.params["feature_channels"], posterior_channels_in=self.params["pathpred_in_channels"], dual_head=self.params["predict_confidence"], compute_prior=self.params["compute_prior"], use_prior=self.params["use_prior_only"], oob=self.params["clip_observability"]) print("UNet Channels: " + str(self.num_map_channels)) print("Feature Channels: " + str(self.num_feature_channels)) # TODO:O Verify that config has the same randomization parameters (yaw, pos, etc) self.second_transform = self.do_perturb_maps or self.params[ "predict_in_start_frame"] # Sentence Embedding self.sentence_embedding = SentenceEmbeddingSimple( self.params["word_emb_size"], self.params["emb_size"], self.params["emb_layers"], self.params["emb_dropout"]) self.map_transform_local_to_local = MapTransformer( source_map_size=self.params["local_map_size"], dest_map_size=self.params["local_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"]) self.map_transform_global_to_local = MapTransformer( source_map_size=self.params["global_map_size"], dest_map_size=self.params["local_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"]) self.map_transform_local_to_global = MapTransformer( source_map_size=self.params["local_map_size"], dest_map_size=self.params["global_map_size"], world_size_px=self.params["world_size_px"], world_size_m=self.params["world_size_m"]) self.map_transform_s_to_p = self.map_transform_local_to_local self.map_transform_w_to_s = self.map_transform_global_to_local self.map_transform_w_to_r = self.map_transform_global_to_local self.map_transform_r_to_s = self.map_transform_local_to_local self.map_transform_r_to_w = self.map_transform_local_to_global self.map_transform_p_to_w = self.map_transform_local_to_global self.map_transform_p_to_r = self.map_transform_local_to_local # Batch select is used to drop and forget semantic maps at those timestaps that we're not planning in self.batch_select = MapBatchSelect() # Since we only have path predictions for some timesteps (the ones not dropped above), we use this to fill # in the missing pieces by reorienting the past trajectory prediction into the frame of the current timestep self.map_batch_fill_missing = MapBatchFillMissing( self.params["local_map_size"], self.params["world_size_px"], self.params["world_size_m"]) self.spatialsoftmax = SpatialSoftmax2d() self.visitation_softmax = VisitationSoftmax() #TODO:O Use CroppedMapToActionTriplet in Wrapper as Stage2 # Auxiliary Objectives # -------------------------------------------------------------------------------------------------------------- # We add all auxiliaries that are necessary. The first argument is the auxiliary name, followed by parameters, # followed by variable number of names of inputs. ModuleWithAuxiliaries will automatically collect these inputs # that have been saved with keep_auxiliary_input() during execution if self.use_aux["class_features"]: self.losses.add_auxiliary( ClassAuxiliary2D("class_features", self.params["feature_channels"], self.params["num_landmarks"], 0, "fpv_features", "lm_pos_fpv", "lm_indices")) if self.use_aux["grounding_features"]: self.losses.add_auxiliary( ClassAuxiliary2D("grounding_features", self.params["relevance_channels"], 2, 0, "fpv_features_g", "lm_pos_fpv", "lm_mentioned")) if self.use_aux["class_map"]: self.losses.add_auxiliary( ClassAuxiliary2D("class_map", self.params["feature_channels"], self.params["num_landmarks"], 0, "S_W_select", "lm_pos_map_select", "lm_indices_select")) if self.use_aux["grounding_map"]: self.losses.add_auxiliary( ClassAuxiliary2D("grounding_map", self.params["relevance_channels"], 2, 0, "R_W_select", "lm_pos_map_select", "lm_mentioned_select")) # CoRL model uses alignment-model groundings if self.use_aux["lang"]: # one output for each landmark, 2 classes per output. This is for finetuning, so use the embedding that's gonna be fine tuned self.losses.add_auxiliary( ClassAuxiliary("lang", self.params["emb_size"], 2, self.params["num_landmarks"], "sentence_embed", "lang_lm_mentioned")) if self.use_aux["regularize_map"]: self.losses.add_auxiliary( FeatureRegularizationAuxiliary2D("regularize_map", "l1", "S_W_select")) lossfunc = self.params["path_loss_function"] if self.params["clip_observability"]: self.losses.add_auxiliary( PathAuxiliary2D("visitation_dist", lossfunc, self.params["clip_observability"], "log_v_dist_s_select", "v_dist_s_ground_truth_select", "SM_S_select")) else: self.losses.add_auxiliary( PathAuxiliary2D("visitation_dist", lossfunc, self.params["clip_observability"], "log_v_dist_s_select", "v_dist_s_ground_truth_select", "SM_S_select")) self.goal_good_criterion = GoalPredictionGoodCriterion( ok_distance=self.params["world_size_px"] * 0.1) self.goal_acc_meter = MovingAverageMeter(10) self.visible_goal_acc_meter = MovingAverageMeter(10) self.invisible_goal_acc_meter = MovingAverageMeter(10) self.visible_goal_frac_meter = MovingAverageMeter(10) self.losses.print_auxiliary_info() self.total_goals = 0 self.correct_goals = 0 self.env_id = None self.env_img = None self.seg_idx = None self.prev_instruction = None self.seq_step = 0 self.should_save_path_overlays = False def make_picklable(self): self.writer = DummySummaryWriter() def steal_cross_domain_modules(self, other_self): self.iter = other_self.iter self.losses = other_self.losses self.sentence_embedding = other_self.sentence_embedding self.map_accumulator_w = other_self.map_accumulator_w self.map_processor_grounding = other_self.map_processor_grounding self.path_predictor_lingunet = other_self.path_predictor_lingunet #self.img_to_features_w = other_self.img_to_features_w def both_domain_parameters(self, other_self): # This function iterates and yields parameters from this module and the other module, but does not yield # shared parameters twice. # First yield all of the other module's parameters for p in other_self.parameters(): yield p # Then yield all the parameters from the this module that are not shared with the other one for p in self.img_to_features_w.parameters(): yield p return def get_iter(self): return int(self.iter.data[0]) def inc_iter(self): self.iter += 1 def load_state_dict(self, state_dict, strict=True): super(PVN_Stage1_Bidomain_Original, self).load_state_dict(state_dict, strict) def init_weights(self): self.img_to_features_w.init_weights() self.map_accumulator_w.init_weights() self.sentence_embedding.init_weights() self.map_processor_grounding.init_weights() self.path_predictor_lingunet.init_weights() def reset(self): # TODO: This is error prone. Create a class StatefulModule, iterate submodules and reset all stateful modules self.tensor_store.reset() self.sentence_embedding.reset() self.img_to_features_w.reset() self.map_accumulator_w.reset() self.map_batch_fill_missing.reset() self.prev_instruction = None def setEnvContext(self, context): print("Set env context to: " + str(context)) self.env_id = context["env_id"] self.env_img = env.load_env_img(self.env_id, 256, 256) self.env_img = self.env_img[:, :, [2, 1, 0]] def set_save_path_overlays(self, save_path_overlays): self.should_save_path_overlays = save_path_overlays #TODO:O Figure out what to do with save_ground_truth_overlays def print_metrics(self): print(f"Model {self.model_name}:{self.domain} metrics:") print( f" Goal accuracy: {float(self.correct_goals) / self.total_goals}" ) def goal_visible(self, masks, goal_pos): goal_mask = masks.detach()[0, 0, :, :] goal_pos = goal_pos[0].long().detach() visible = bool( (goal_mask[goal_pos[0], goal_pos[1]] > 0.5).detach().cpu().item()) return visible # This is called before beginning an execution sequence def start_sequence(self): self.seq_step = 0 self.reset() return def cam_poses_from_states(self, states): cam_pos = states[:, 9:12] cam_rot = states[:, 12:16] pose = Pose(cam_pos, cam_rot) return pose def forward(self, images, states, instructions, instr_lengths, plan=None, noisy_start_poses=None, start_poses=None, firstseg=None, select_only=True, halfway=False, grad_noise=False, rl=False): """ :param images: BxCxHxW batch of images (observations) :param states: BxK batch of drone states :param instructions: BxM LongTensor where M is the maximum length of any instruction :param instr_lengths: list of len B of integers, indicating length of each instruction :param plan: list of B booleans indicating True for timesteps where we do planning and False otherwise :param noisy_start_poses: list of noisy start poses (for data-augmentation). These define the path-prediction frame at training time :param start_poses: list of drone start poses (these should be equal in practice) :param firstseg: list of booleans indicating True if a new segment starts at that timestep :param select_only: boolean indicating whether to only compute visitation distributions for planning timesteps (default True) :param rl: boolean indicating if we're doing reinforcement learning. If yes, output more than the visitation distribution :return: """ cam_poses = self.cam_poses_from_states(states) g_poses = None # None pose is a placeholder for the canonical global pose. self.prof.tick("out") self.tensor_store.keep_inputs("fpv", images) # Calculate the instruction embedding if instructions is not None: # TODO: Take batch of instructions and their lengths, return batch of embeddings. Store the last one as internal state # TODO: There's an assumption here that there's only a single instruction in the batch and it doesn't change # UNCOMMENT THE BELOW LINE TO REVERT BACK TO GENERAL CASE OF SEPARATE INSTRUCTION PER STEP if self.params["ignore_instruction"]: # If we're ignoring instructions, just feed in an instruction that consists of a single zero-token sent_embeddings = self.sentence_embedding( torch.zeros_like(instructions[0:1, 0:1]), torch.ones_like(instr_lengths[0:1])) else: sent_embeddings = self.sentence_embedding( instructions[0:1], instr_lengths[0:1]) self.tensor_store.keep_inputs("sentence_embed", sent_embeddings) else: sent_embeddings = self.sentence_embedding.get() self.prof.tick("embed") # Extract and project features onto the egocentric frame for each image F_W, M_W = self.img_to_features_w(images, cam_poses, sent_embeddings, self.tensor_store, show="", halfway=halfway) # For training the critic, this is as far as we need to poceed with the computation. # self.img_to_features_w has stored computed feature maps inside the tensor store, which will then be retrieved by the critic if halfway == True: # Warning: halfway must be True not truthy return None, None self.tensor_store.keep_inputs("F_w", F_W) self.tensor_store.keep_inputs("M_w", M_W) self.prof.tick("img_to_map_frame") # Accumulate the egocentric features in a global map reset_mask = firstseg if self.params["clear_history"] else None # Consider the space very near the drone and right under it as observed - draw ones on the observability mask # If we treat that space as unobserved, then there's going to be a gap in the visitation distribution, which # makes training with RL more difficult, as there is no reward feedback if the drone doesn't cross that gap. if self.params.get("cover_init_pos", False): StartMasks_R = self.add_init_pos_to_coverage.get_init_pos_masks( M_W.shape[0], M_W.device) StartMasks_W, _ = self.map_transform_r_to_w( StartMasks_R, cam_poses, None) M_W = self.add_init_pos_to_coverage(M_W, StartMasks_W) S_W, SM_W = self.map_accumulator_w(F_W, M_W, reset_mask=reset_mask, show="acc" if IMG_DBG else "") S_W_poses = g_poses self.prof.tick("map_accumulate") # If we're training Stage 2 with imitation learning from ground truth visitation distributions, we want to # compute observability masks with the same code that's used in Stage 1 to avoid mistakes. if halfway == "observability": map_uncoverage_w = 1 - SM_W return map_uncoverage_w # Throw away those timesteps that don't correspond to planning timesteps S_W_select, SM_W_select, S_W_poses_select, cam_poses_select, noisy_start_poses_select, start_poses_select, sent_embeddings_select = \ self.batch_select(S_W, SM_W, S_W_poses, cam_poses, noisy_start_poses, start_poses, sent_embeddings, plan) #maps_m_prior_select, maps_m_posterior_select = None, None # Only process the maps on plannieng timesteps if len(S_W_select) == 0: return None self.tensor_store.keep_inputs("S_W_select", S_W_select) self.prof.tick("batch_select") # Process the map via the two map_procesors # Do grounding of objects in the map chosen to do so if self.use_aux["grounding_map"]: R_W_select, RS_W_poses_select = self.map_processor_grounding( S_W_select, sent_embeddings_select, S_W_poses_select, show="") self.tensor_store.keep_inputs("R_W_select", R_W_select) self.prof.tick("map_proc_gnd") # Concatenate grounding map and semantic map along channel dimension RS_W_select = torch.cat([S_W_select, R_W_select], 1) else: RS_W_select = S_W_select RS_W_poses_select = S_W_poses_select s_poses_select = start_poses_select if self.params[ "predict_in_start_frame"] else cam_poses_select RS_S_select, RS_S_poses_select = self.map_transform_w_to_s( RS_W_select, RS_W_poses_select, s_poses_select) SM_S_select, SM_S_poses_select = self.map_transform_w_to_s( SM_W_select, S_W_poses_select, s_poses_select) assert SM_S_poses_select == RS_S_poses_select, "Masks and maps should have the same pose in start frame" self.tensor_store.keep_inputs("RS_S_select", RS_S_select) self.tensor_store.keep_inputs("SM_S_select", SM_S_select) self.prof.tick("transform_w_to_s") # Data augmentation for trajectory prediction map_poses_clean_select = None # TODO: Figure out if we can just swap out start poses for noisy poses and get rid of separate noisy poses if self.do_perturb_maps: assert noisy_start_poses_select is not None, "Noisy poses must be provided if we're perturbing maps" RS_P_select, RS_P_poses_select = self.map_transform_s_to_p( RS_S_select, RS_S_poses_select, noisy_start_poses_select) else: RS_P_select, RS_P_poses_select = RS_S_select, RS_S_poses_select self.tensor_store.keep_inputs("RS_perturbed_select", RS_P_select) self.prof.tick("map_perturb") sent_embeddings_pp = sent_embeddings_select # Run lingunet on the map to predict visitation distribution scores (pre-softmax) # --------- log_v_dist_p_select, v_dist_p_poses_select = self.path_predictor_lingunet( RS_P_select, sent_embeddings_pp, RS_P_poses_select, tensor_store=self.tensor_store) # --------- self.prof.tick("pathpred") # TODO: Shouldn't we be transforming probability distributions instead of scores? Otherwise OOB space will have weird values # Transform distributions back to world reference frame and keep them (these are the model outputs) both_inner_w, v_dist_w_poses_select = self.map_transform_p_to_w( log_v_dist_p_select.inner_distribution, v_dist_p_poses_select, None) log_v_dist_w_select = Partial2DDistribution( both_inner_w, log_v_dist_p_select.outer_prob_mass) self.tensor_store.keep_inputs("log_v_dist_w_select", log_v_dist_w_select) # Transform distributions back to start reference frame and keep them (for auxiliary objective) both_inner_s, v_dist_s_poses_select = self.map_transform_p_to_r( log_v_dist_p_select.inner_distribution, v_dist_p_poses_select, start_poses_select) log_v_dist_s_select = Partial2DDistribution( both_inner_s, log_v_dist_p_select.outer_prob_mass) self.tensor_store.keep_inputs("log_v_dist_s_select", log_v_dist_s_select) # prime number will mean that it will alternate between sim and real if self.get_iter() % 23 == 0: lsfm = SpatialSoftmax2d() for i in range(S_W_select.shape[0]): Presenter().show_image(S_W_select.detach().cpu()[i, 0:3], f"{self.domain}_s_w_select", scale=4, waitkey=1) Presenter().show_image(lsfm( log_v_dist_s_select.inner_distribution).detach().cpu()[i], f"{self.domain}_v_dist_s_select", scale=4, waitkey=1) Presenter().show_image(lsfm( log_v_dist_p_select.inner_distribution).detach().cpu()[i], f"{self.domain}_v_dist_p_select", scale=4, waitkey=1) Presenter().show_image(RS_P_select.detach().cpu()[i, 0:3], f"{self.domain}_rs_p_select", scale=4, waitkey=1) break self.prof.tick("transform_back") # If we're predicting the trajectory only on some timesteps, then for each timestep k, use the map from # timestep k if predicting on timestep k. otherwise use the map from timestep j - the last timestep # that had a trajectory prediction, rotated in the frame of timestep k. if select_only: # If we're just pre-training the trajectory prediction, don't waste time on generating the missing maps log_v_dist_w = log_v_dist_w_select v_dist_w_poses = v_dist_w_poses_select else: raise NotImplementedError("select_only must be True") return_list = [log_v_dist_w, v_dist_w_poses] if rl: internals_for_rl = { "map_coverage_w": SM_W, "map_uncoverage_w": 1 - SM_W } return_list.append(internals_for_rl) return tuple(return_list) def maybe_cuda(self, tensor): return tensor.to(next(self.parameters()).device) def cuda_var(self, tensor): return tensor.to(next(self.parameters()).device) def unbatch(self, batch, halfway=False): # Inputs images = self.maybe_cuda(batch["images"][0]) seq_len = len(images) instructions = self.maybe_cuda(batch["instr"][0][:seq_len]) instr_lengths = batch["instr_len"][0][:seq_len] states = self.maybe_cuda(batch["states"][0]) if not halfway: plan_mask = batch["plan_mask"][ 0] # True for every timestep that we do visitation prediction firstseg_mask = batch["firstseg_mask"][ 0] # True for every timestep that is a new instruction segment # Labels (including for auxiliary losses) lm_pos_fpv = batch["lm_pos_fpv"][ 0] # All object 2D coordinates in the first-person image lm_pos_map_m = batch["lm_pos_map"][ 0] # All object 2D coordinates in the semantic map lm_indices = batch["lm_indices"][0] # All object class indices goal_pos_map_m = batch["goal_loc"][ 0] # Goal location in the world in meters_and_metrics lm_mentioned = batch["lm_mentioned"][ 0] # 1/0 labels whether object was mentioned/not mentioned in template instruction # TODO: We're taking the FIRST label here. SINGLE SEGMENT ASSUMPTION lang_lm_mentioned = batch["lang_lm_mentioned"][0][ 0] # integer labes as to which object was mentioned start_poses = batch["start_poses"][0] noisy_start_poses = get_noisy_poses_torch( start_poses.numpy(), self.params["pos_variance"], self.params["rot_variance"], cuda=False, cuda_device=None) # Ground truth visitation distributions (in start and global frames) v_dist_w_ground_truth_select = self.maybe_cuda( batch["traj_ground_truth"][0]) start_poses_select = self.batch_select.one( start_poses, plan_mask, v_dist_w_ground_truth_select.device) v_dist_s_ground_truth_select, poses_s = self.map_transform_w_to_s( v_dist_w_ground_truth_select, None, start_poses_select) #self.tensor_store.keep_inputs("v_dist_w_ground_truth_select", v_dist_w_ground_truth_select) self.tensor_store.keep_inputs("v_dist_s_ground_truth_select", v_dist_s_ground_truth_select) #Presenter().show_image(v_dist_s_ground_truth_select.detach().cpu()[0,0], "v_dist_s_ground_truth_select", waitkey=1, scale=4) #Presenter().show_image(v_dist_w_ground_truth_select.detach().cpu()[0,0], "v_dist_w_ground_truth_select", waitkey=1, scale=4) lm_pos_map_px = [ torch.from_numpy( transformations.pos_m_to_px(p.numpy(), self.params["global_map_size"], self.params["world_size_m"], self.params["world_size_px"])) if p is not None else None for p in lm_pos_map_m ] goal_pos_map_px = torch.from_numpy( transformations.pos_m_to_px(goal_pos_map_m.numpy(), self.params["global_map_size"], self.params["world_size_m"], self.params["world_size_px"])) resnet_factor = self.img_to_features_w.img_to_features.get_downscale_factor( ) lm_pos_fpv = [ self.cuda_var( (s / resnet_factor).long()) if s is not None else None for s in lm_pos_fpv ] lm_indices = [ self.cuda_var(s) if s is not None else None for s in lm_indices ] lm_mentioned = [ self.cuda_var(s) if s is not None else None for s in lm_mentioned ] lang_lm_mentioned = self.cuda_var(lang_lm_mentioned) lm_pos_map_px = [ self.cuda_var(s.long()) if s is not None else None for s in lm_pos_map_px ] goal_pos_map_px = self.cuda_var(goal_pos_map_px) self.tensor_store.keep_inputs("lm_pos_fpv", lm_pos_fpv) self.tensor_store.keep_inputs("lm_pos_map", lm_pos_map_px) self.tensor_store.keep_inputs("lm_indices", lm_indices) self.tensor_store.keep_inputs("lm_mentioned", lm_mentioned) self.tensor_store.keep_inputs("lang_lm_mentioned", lang_lm_mentioned) self.tensor_store.keep_inputs("goal_pos_map", goal_pos_map_px) lm_pos_map_select = [ lm_pos for i, lm_pos in enumerate(lm_pos_map_px) if plan_mask[i] ] lm_indices_select = [ lm_idx for i, lm_idx in enumerate(lm_indices) if plan_mask[i] ] lm_mentioned_select = [ lm_m for i, lm_m in enumerate(lm_mentioned) if plan_mask[i] ] goal_pos_map_select = [ pos for i, pos in enumerate(goal_pos_map_px) if plan_mask[i] ] self.tensor_store.keep_inputs("lm_pos_map_select", lm_pos_map_select) self.tensor_store.keep_inputs("lm_indices_select", lm_indices_select) self.tensor_store.keep_inputs("lm_mentioned_select", lm_mentioned_select) self.tensor_store.keep_inputs("goal_pos_map_select", goal_pos_map_select) # We won't need this extra information else: noisy_poses, start_poses, noisy_start_poses = None, None, None plan_mask, firstseg_mask = None, None metadata = batch["md"][0][0] env_id = metadata["env_id"] self.tensor_store.set_flag("env_id", env_id) return images, states, instructions, instr_lengths, plan_mask, firstseg_mask, start_poses, noisy_start_poses, metadata # Forward pass for training def sup_loss_on_batch(self, batch, eval, halfway=False, grad_noise=False, disable_losses=[]): self.prof.tick("out") self.reset() if batch is None: print("Skipping None Batch") zero = torch.zeros([1]).float().to(next(self.parameters()).device) return zero, self.tensor_store images, states, instructions, instr_len, plan_mask, firstseg_mask, \ start_poses, noisy_start_poses, metadata = self.unbatch(batch, halfway=halfway) self.prof.tick("unbatch_inputs") # ---------------------------------------------------------------------------- _ = self(images, states, instructions, instr_len, plan=plan_mask, firstseg=firstseg_mask, noisy_start_poses=start_poses if eval else noisy_start_poses, start_poses=start_poses, select_only=True, halfway=halfway, grad_noise=grad_noise) # ---------------------------------------------------------------------------- if self.should_save_path_overlays: self.save_path_overlays(metadata) # If we run the model halfway, we only need to calculate features needed for the wasserstein loss # If we want to include more features in wasserstein critic, have to run the forward pass a bit further if halfway and not halfway == "v2": return None, self.tensor_store # The returned values are not used here - they're kept in the tensor store which is used as an input to a loss self.prof.tick("call") if not halfway: # Calculate goal-prediction accuracy: goal_pos = self.tensor_store.get_inputs_batch("goal_pos_map", cat_not_stack=True) success_goal = self.goal_good_criterion( self.tensor_store.get_inputs_batch("log_v_dist_w_select", cat_not_stack=True), goal_pos) acc = 1.0 if success_goal else 0.0 self.goal_acc_meter.put(acc) goal_visible = self.goal_visible( self.tensor_store.get_inputs_batch("M_w", cat_not_stack=True), goal_pos) if goal_visible: self.visible_goal_acc_meter.put(acc) else: self.invisible_goal_acc_meter.put(acc) self.visible_goal_frac_meter.put(1.0 if goal_visible else 0.0) self.correct_goals += acc self.total_goals += 1 self.prof.tick("goal_acc") if halfway == "v2": disable_losses = ["visitation_dist", "lang"] losses, metrics = self.losses.calculate_aux_loss( tensor_store=self.tensor_store, reduce_average=True, disable_losses=disable_losses) loss = self.losses.combine_losses(losses, self.aux_weights) self.prof.tick("calc_losses") prefix = self.model_name + ("/eval" if eval else "/train") iteration = self.get_iter() self.writer.add_dict(prefix, get_current_meters(), iteration) self.writer.add_dict(prefix, losses, iteration) self.writer.add_dict(prefix, metrics, iteration) if not halfway: self.writer.add_scalar(prefix + "/goal_accuracy", self.goal_acc_meter.get(), iteration) self.writer.add_scalar(prefix + "/visible_goal_accuracy", self.visible_goal_acc_meter.get(), iteration) self.writer.add_scalar(prefix + "/invisible_goal_accuracy", self.invisible_goal_acc_meter.get(), iteration) self.writer.add_scalar(prefix + "/visible_goal_fraction", self.visible_goal_frac_meter.get(), iteration) self.inc_iter() self.prof.tick("summaries") self.prof.loop() self.prof.print_stats(1) return loss, self.tensor_store def get_dataset(self, data=None, envs=None, domain=None, dataset_names=None, dataset_prefix=None, eval=False, halfway_only=False): # TODO: Maybe use eval here data_sources = [] # If we're running auxiliary objectives, we need to include the data sources for the auxiliary labels #if self.use_aux_class_features or self.use_aux_class_on_map or self.use_aux_grounding_features or self.use_aux_grounding_on_map: #if self.use_aux_goal_on_map: if not halfway_only: data_sources.append(aup.PROVIDER_LM_POS_DATA) data_sources.append(aup.PROVIDER_GOAL_POS) # Adding these in this order will compute poses with added noise and compute trajectory ground truth # in the reference frame of these noisy poses data_sources.append(aup.PROVIDER_START_POSES) if self.do_perturb_maps: print("PERTURBING MAPS!") # TODO: The noisy poses from the provider are not actually used!! Those should replace states instead! data_sources.append(aup.PROVIDER_NOISY_POSES) # TODO: Think this through. Perhaps we actually want dynamic ground truth given a noisy start position if self.params["predict_in_start_frame"]: data_sources.append( aup.PROVIDER_TRAJECTORY_GROUND_TRUTH_STATIC) else: data_sources.append( aup.PROVIDER_TRAJECTORY_GROUND_TRUTH_DYNAMIC_NOISY) else: print("NOT Perturbing Maps!") data_sources.append(aup.PROVIDER_NOISY_POSES) if self.params["predict_in_start_frame"]: data_sources.append( aup.PROVIDER_TRAJECTORY_GROUND_TRUTH_STATIC) else: data_sources.append( aup.PROVIDER_TRAJECTORY_GROUND_TRUTH_DYNAMIC) data_sources.append(aup.PROVIDER_LANDMARKS_MENTIONED) templates = get_current_parameters()["Environment"]["templates"] if templates: data_sources.append(aup.PROVIDER_LANG_TEMPLATE) return SegmentDataset(data=data, env_list=envs, domain=domain, dataset_names=dataset_names, dataset_prefix=dataset_prefix, aux_provider_names=data_sources, segment_level=True)