help="Optimized model type. It can be 'pupil' or optimizer or 'optimizer'. Default is 'optimizer'", default='optimizer', ) parser.add_argument( "-v", "--verbose", help="Regulate verbosity", action='store_true' ) args = parser.parse_args() abspath = os.path.abspath(__file__) dname = os.path.dirname(abspath) os.chdir(dname) confs = parse_path_comb(args.confs) eval_dirs = list() for conf in confs: base = '.'.join(conf.split('.')[:-1]) dirs = list() if args.model == 'optimizer': cand1 = os.path.join(base, 'evaluation') cand2 = os.path.join(base, 'eval_fix') if os.path.exists(cand1): dirs.append(cand1) if os.path.exists(cand2): dirs.append(cand2) elif args.model == 'pupil': base = os.path.join(base, 'evaluation') for eval_file in os.listdir(base): if 'launch_log' not in eval_file:
) parser.add_argument("-nl", "--no_line", help="Do not link dots with line. Default is True", action='store_true') parser.add_argument( '-hpnf', "--hp_names_file", help= "File with hyper parameter names. All available files are in the same directory with this script", default='hp_plot_names_english.conf') args = parser.parse_args() abspath = os.path.abspath(__file__) dname = os.path.dirname(abspath) os.chdir(dname) dirs = parse_path_comb(args.dirs) labels = args.labels.split(',') datasets = args.datasets.split(',') lines_by_metrics = dict() label_idx = 0 if args.x_select is None: x_select = None else: x_select = parse_x_select(args.x_select) for label, dir in zip(labels, dirs): dir_contents = parse_1_line_dir(dir) for metric, metric_data in dir_contents.items():
parser.add_argument( '-on', '--old_name', help="old parameter names", ) parser.add_argument( '-nn', '--new_name', help='new parameter names', ) parser.add_argument( '-tp', '--types', help="Types of parameters. default is float for all", default=None, ) args = parser.parse_args() transformations = args.transformation.split(',') old_names = args.old_name.split(',') new_names = args.new_name.split(',') num_params = len(old_names) res_files = parse_path_comb(args.eval_file) for f in res_files: perform_transformation(f, args.new_eval_dir, old_names, new_names, args.types, transformations)
if args.x_select is None: select['x_select'] = None else: select['x_select'] = parse_x_select(args.x_select) if args.line_select is None: select['line_select'] = None else: select['line_select'] = parse_line_select(args.line_select) style = dict( no_line=args.no_line, error=args.error, marker=args.marker, ) eval_dirs = parse_path_comb(args.eval_dir) metric_scales = parse_metric_scales_str(args.metric_scales) hp_plot_order = args.hp_order.split(',') # abspath = os.path.abspath(__file__) # dname = os.path.dirname(abspath) # os.chdir(dname) plot_parameter_names = get_parameter_names( os.path.join(*(os.path.split(os.path.abspath(__file__))[:-1] + (args.hp_names_file, )))) xscale = args.xscale for eval_dir in eval_dirs: print(eval_dir) plot_dir = os.path.join(*list(os.path.split(eval_dir)[:-1]) + [args.plot_dir])
"--verbose", help="Regulate verbosity", action='store_true') parser.add_argument( '-ng', '--no_git', help="don't add confs to git", action='store_true', ) args = parser.parse_args() base_path = helmo.util.path_help.get_path_from_path_rel_to_repo_root( os.path.join('helmo', 'experiments')) confs = parse_path_comb(args.confs, filter_=False) hp_names_with_types = args.hyper_parameters.split(':') hp_names = list() types = list() for s in hp_names_with_types: spl = s.split(',') hp_names.append(spl[0]) types.append(spl[1]) span = args.span.split(':') points = list() for string in span: points.append(get_points_from_range(string))
parser.add_argument('-o', "--output", help="Output file name. Path relative to this script.") parser.add_argument( '-i', "--inter_path", help="Path between model folder and results folder. default is 'test'", default='test', ) parser.add_argument("-v", "--verbose", help="Regulate verbosity", action='store_true') args = parser.parse_args() model_paths = parse_path_comb(args.model_paths, filter_=False) results = dict() for model_path in model_paths: results[model_path] = pupil_test_results_summarize(model_path, args.inter_path) string = stats_string_for_all_models(results, 2) create_path(args.output, file_name_is_in_path=True) with open(args.output, 'w') as f: f.write(string) if args.verbose: