예제 #1
0
 def test1D(self):
     net = resunet3(1, 1, spatial=(32, ))
     net(th.rand(1, 1, 16))
     net = resunet3(1, 1, spatial=(32, ), normalizor='instance')
     net(th.rand(1, 1, 16))
     net = resunet3(1, 1, spatial=(32, ), normalizor='layer')
     net(th.rand(1, 1, 16))
예제 #2
0
 def testHyp1D(self):
     net = resunet3(1, 1, spatial=(32, ), block=HyperBasic)
     net(th.rand(1, 1, 16))
     net = resunet3(1,
                    1,
                    spatial=(32, ),
                    normalizor='instance',
                    block=HyperBasic)
     net(th.rand(1, 1, 16))
     net = resunet3(1,
                    1,
                    spatial=(32, ),
                    normalizor='layer',
                    block=HyperBasic)
     net(th.rand(1, 1, 16))
     net = resunet3(1, 1, spatial=(32, ), block=HyperBottleneck)
     net(th.rand(1, 1, 16))
     net = resunet3(1,
                    1,
                    spatial=(32, ),
                    normalizor='instance',
                    block=HyperBottleneck)
     net(th.rand(1, 1, 16))
     net = resunet3(1,
                    1,
                    spatial=(32, ),
                    normalizor='layer',
                    block=HyperBottleneck)
     net(th.rand(1, 1, 16))
예제 #3
0
 def test2D(self):
     resunet3(1, 1, spatial=(16, 16))
     resunet3(1, 1, spatial=(16, 32))
     resunet3(1, 1, spatial=(32, 16))
     net = resunet3(1,
                    1,
                    spatial=(32, 16),
                    scales=[[0, -1], [0, -1], [0, -1], [0, -1]])
     net(th.rand(1, 1, 32, 16))
     net = resunet3(1,
                    1,
                    spatial=(32, 16),
                    scales=[[0, -1], [0, -1], [0, -1], [0, -1]],
                    normalizor='instance')
     net(th.rand(1, 1, 32, 16))
     net = resunet3(1,
                    1,
                    spatial=(32, 16),
                    scales=[[0, -1], [0, -1], [0, -1], [0, -1]],
                    normalizor='layer')
     net(th.rand(1, 1, 32, 16))
예제 #4
0
 def testHyp3D2(self):
     net = resunet3(1,
                    1,
                    spatial=(4, 16, 32),
                    scales=[[0, -1, -1], [-1, -1, -1], [0, -1, -1],
                            [-1, -1, -1]],
                    block=HyperBasic2)
     net(th.rand(1, 1, 4, 16, 32))
     net = resunet3(1,
                    1,
                    spatial=(4, 16, 32),
                    scales=[[0, -1, -1], [-1, -1, -1], [0, -1, -1],
                            [-1, -1, -1]],
                    normalizor='instance',
                    block=HyperBasic2)
     net(th.rand(1, 1, 4, 16, 32))
     net = resunet3(1,
                    1,
                    spatial=(4, 16, 32),
                    scales=[[0, -1, -1], [-1, -1, -1], [0, -1, -1],
                            [-1, -1, -1]],
                    normalizor='layer',
                    block=HyperBasic2)
     net(th.rand(1, 1, 4, 16, 32))
     net = resunet3(1,
                    1,
                    spatial=(4, 16, 32),
                    scales=[[0, -1, -1], [-1, -1, -1], [0, -1, -1],
                            [-1, -1, -1]],
                    block=HyperBottleneck2)
     net(th.rand(1, 1, 4, 16, 32))
     net = resunet3(1,
                    1,
                    spatial=(4, 16, 32),
                    scales=[[0, -1, -1], [-1, -1, -1], [0, -1, -1],
                            [-1, -1, -1]],
                    normalizor='instance',
                    block=HyperBottleneck2)
     net(th.rand(1, 1, 4, 16, 32))
     net = resunet3(1,
                    1,
                    spatial=(4, 16, 32),
                    scales=[[0, -1, -1], [-1, -1, -1], [0, -1, -1],
                            [-1, -1, -1]],
                    normalizor='layer',
                    block=HyperBottleneck2)
     net(th.rand(1, 1, 4, 16, 32))
예제 #5
0
 def testSE3D(self):
     net = resunet3(1,
                    1,
                    spatial=(4, 16, 32),
                    scales=[[0, -1, -1], [-1, -1, -1], [0, -1, -1],
                            [-1, -1, -1]],
                    block=SEBasicBlock)
     net(th.rand(1, 1, 4, 16, 32))
     net = resunet3(1,
                    1,
                    spatial=(4, 16, 32),
                    scales=[[0, -1, -1], [-1, -1, -1], [0, -1, -1],
                            [-1, -1, -1]],
                    normalizor='instance',
                    block=SEBasicBlock)
     net(th.rand(1, 1, 4, 16, 32))
     net = resunet3(1,
                    1,
                    spatial=(4, 16, 32),
                    scales=[[0, -1, -1], [-1, -1, -1], [0, -1, -1],
                            [-1, -1, -1]],
                    normalizor='layer',
                    block=SEBasicBlock)
     net(th.rand(1, 1, 4, 16, 32))
     net = resunet3(1,
                    1,
                    spatial=(4, 16, 32),
                    scales=[[0, -1, -1], [-1, -1, -1], [0, -1, -1],
                            [-1, -1, -1]],
                    block=SEBottleneck)
     net(th.rand(1, 1, 4, 16, 32))
     net = resunet3(1,
                    1,
                    spatial=(4, 16, 32),
                    scales=[[0, -1, -1], [-1, -1, -1], [0, -1, -1],
                            [-1, -1, -1]],
                    normalizor='instance',
                    block=SEBottleneck)
     net(th.rand(1, 1, 4, 16, 32))
     net = resunet3(1,
                    1,
                    spatial=(4, 16, 32),
                    scales=[[0, -1, -1], [-1, -1, -1], [0, -1, -1],
                            [-1, -1, -1]],
                    normalizor='layer',
                    block=SEBottleneck)
     net(th.rand(1, 1, 4, 16, 32))
예제 #6
0
 def testHyp2DGroupNorm(self):
     net = resunet3(1,
                    1,
                    spatial=(32, 16),
                    scales=[[0, -1], [0, -1], [0, -1], [0, -1]],
                    normalizor='group',
                    block=HyperBasic)
     net(th.rand(1, 1, 32, 16))
     net = resunet3(1,
                    1,
                    spatial=(32, 16),
                    scales=[[0, -1], [0, -1], [0, -1], [0, -1]],
                    normalizor='group',
                    block=HyperBasic)
     net(th.rand(1, 1, 32, 16))
     net = resunet3(1,
                    1,
                    spatial=(32, 16),
                    scales=[[0, -1], [0, -1], [0, -1], [0, -1]],
                    normalizor='group',
                    block=HyperBasic)
     net(th.rand(1, 1, 32, 16))
     net = resunet3(1,
                    1,
                    spatial=(32, 16),
                    scales=[[0, -1], [0, -1], [0, -1], [0, -1]],
                    normalizor='group',
                    block=HyperBottleneck)
     net(th.rand(1, 1, 32, 16))
     net = resunet3(1,
                    1,
                    spatial=(32, 16),
                    scales=[[0, -1], [0, -1], [0, -1], [0, -1]],
                    normalizor='group',
                    block=HyperBottleneck)
     net(th.rand(1, 1, 32, 16))
     net = resunet3(1,
                    1,
                    spatial=(32, 16),
                    scales=[[0, -1], [0, -1], [0, -1], [0, -1]],
                    normalizor='group',
                    block=HyperBottleneck)
     net(th.rand(1, 1, 32, 16))
예제 #7
0
 def testHyp2D(self):
     net = resunet3(1,
                    1,
                    spatial=(32, 16),
                    scales=[[0, -1], [0, -1], [0, -1], [0, -1]],
                    block=HyperBasic)
     net(th.rand(1, 1, 32, 16))
     net = resunet3(1,
                    1,
                    spatial=(32, 16),
                    scales=[[0, -1], [0, -1], [0, -1], [0, -1]],
                    normalizor='instance',
                    block=HyperBasic)
     net(th.rand(1, 1, 32, 16))
     net = resunet3(1,
                    1,
                    spatial=(32, 16),
                    scales=[[0, -1], [0, -1], [0, -1], [0, -1]],
                    normalizor='layer',
                    block=HyperBasic)
     net(th.rand(1, 1, 32, 16))
     net = resunet3(1,
                    1,
                    spatial=(32, 16),
                    scales=[[0, -1], [0, -1], [0, -1], [0, -1]],
                    block=HyperBottleneck)
     net(th.rand(1, 1, 32, 16))
     net = resunet3(1,
                    1,
                    spatial=(32, 16),
                    scales=[[0, -1], [0, -1], [0, -1], [0, -1]],
                    normalizor='instance',
                    block=HyperBottleneck)
     net(th.rand(1, 1, 32, 16))
     net = resunet3(1,
                    1,
                    spatial=(32, 16),
                    scales=[[0, -1], [0, -1], [0, -1], [0, -1]],
                    normalizor='layer',
                    block=HyperBottleneck)
     net(th.rand(1, 1, 32, 16))