def test_solve_dposv(problem): A, b, size = problem # square values of A A = A * A # and solve xexp, resid, rank, s = np.linalg.lstsq(A, b, rcond=None) F = A.T @ A x = A.T @ b dposv(F, x, True) assert x == approx(xexp, rel=1.0e-3)
def test_solve_dposv(): size = np.random.randint(5, 50) A = np.random.randn(size, size) b = np.random.randn(size) # square values of A A = A * A # and solve xexp, resid, rank, s = np.linalg.lstsq(A, b, rcond=None) F = A.T @ A x = A.T @ b dposv(F, x, True) assert x == approx(xexp, rel=1.0e-3)