예제 #1
0
def add_noise(image, kwargs_band, background_noise=True, poisson_noise=True):
    """

    :param image: 2d numpy array of a simlulated image without noise
    :param kwargs_band: keyword arguments containing the noise estimates
    :return: noisy image
    """
    single_band = SingleBand(**kwargs_band)
    noise = single_band.noise_for_model(model=image,
                                        background_noise=background_noise,
                                        poisson_noise=poisson_noise)
    return image + noise
예제 #2
0
class TestData(object):
    def setup(self):
        self.ccd_gain = 4.
        pixel_scale = 0.13
        self.read_noise = 10.
        self.kwargs_instrument = {
            'read_noise': self.read_noise,
            'pixel_scale': pixel_scale,
            'ccd_gain': self.ccd_gain
        }

        exposure_time = 100
        sky_brightness = 20.
        self.magnitude_zero_point = 21.
        num_exposures = 2
        seeing = 0.9
        kwargs_observations = {
            'exposure_time': exposure_time,
            'sky_brightness': sky_brightness,
            'magnitude_zero_point': self.magnitude_zero_point,
            'num_exposures': num_exposures,
            'seeing': seeing,
            'psf_type': 'GAUSSIAN'
        }
        self.kwargs_data = util.merge_dicts(self.kwargs_instrument,
                                            kwargs_observations)
        self.data_adu = SingleBand(data_count_unit='ADU', **self.kwargs_data)
        self.data_e_ = SingleBand(data_count_unit='e-', **self.kwargs_data)

    def test_sky_brightness(self):
        sky_adu = self.data_adu.sky_brightness
        sky_e_ = self.data_e_.sky_brightness
        assert sky_e_ == sky_adu * self.ccd_gain
        npt.assert_almost_equal(sky_adu, 0.627971607877395, decimal=6)

    def test_background_noise(self):
        bkg_adu = self.data_adu.background_noise
        bkg_e_ = self.data_e_.background_noise
        assert bkg_adu == bkg_e_ / self.ccd_gain

        self.data_adu._background_noise = 1
        bkg = self.data_adu.background_noise
        assert bkg == 1

    def test_flux_noise(self):
        flux_iid = 50.
        flux_adu = flux_iid / self.ccd_gain
        noise_adu = self.data_adu.flux_noise(flux_adu)
        noise_e_ = self.data_e_.flux_noise(flux_iid)
        assert noise_e_ == 100. / 200.
        assert noise_e_ == noise_adu * self.ccd_gain

    def test_noise_for_model(self):
        model_adu = np.ones((10, 10))
        model_e_ = model_adu * self.ccd_gain
        noise_adu = self.data_adu.noise_for_model(model_adu,
                                                  background_noise=True,
                                                  poisson_noise=True,
                                                  seed=42)
        noise_adu_2 = self.data_adu.noise_for_model(model_adu,
                                                    background_noise=True,
                                                    poisson_noise=True,
                                                    seed=42)
        npt.assert_almost_equal(noise_adu, noise_adu_2, decimal=10)
        noise_e_ = self.data_e_.noise_for_model(model_e_,
                                                background_noise=True,
                                                poisson_noise=True,
                                                seed=42)
        npt.assert_almost_equal(noise_adu,
                                noise_e_ / self.ccd_gain,
                                decimal=10)
        noise_e_ = self.data_e_.noise_for_model(model_e_,
                                                background_noise=True,
                                                poisson_noise=True,
                                                seed=None)

    def test_estimate_noise(self):
        image_adu = np.ones((10, 10))
        image_e_ = image_adu * self.ccd_gain
        noise_adu = self.data_adu.estimate_noise(image_adu)
        noise_e_ = self.data_e_.estimate_noise(image_e_)
        npt.assert_almost_equal(noise_e_, noise_adu * self.ccd_gain)

    def test_magnitude2cps(self):
        mag_0 = self.data_adu.magnitude2cps(
            magnitude=self.magnitude_zero_point)
        npt.assert_almost_equal(mag_0, 1. / self.ccd_gain, decimal=10)
        mag_0_e_ = self.data_e_.magnitude2cps(
            magnitude=self.magnitude_zero_point)
        npt.assert_almost_equal(mag_0_e_, 1, decimal=10)

        mag_0 = self.data_adu.magnitude2cps(
            magnitude=self.magnitude_zero_point + 1)
        npt.assert_almost_equal(mag_0, 0.0995267926383743, decimal=10)

        mag_0 = self.data_adu.magnitude2cps(
            magnitude=self.magnitude_zero_point - 1)
        npt.assert_almost_equal(mag_0, 0.627971607877395, decimal=10)

    def test_flux_iid(self):
        flux_iid_adu = self.data_adu.flux_iid(flux_per_second=1)
        flux_iid_e = self.data_e_.flux_iid(flux_per_second=1)
        npt.assert_almost_equal(flux_iid_e,
                                flux_iid_adu / self.ccd_gain,
                                decimal=6)

        flux_adu = 10
        flux_e_ = flux_adu * self.ccd_gain
        noise_e_ = self.data_e_.flux_noise(flux_e_)
        noise_adu = self.data_adu.flux_noise(flux_adu)
        npt.assert_almost_equal(noise_e_ / self.ccd_gain, noise_adu, decimal=8)

    def test_psf_type(self):
        assert self.data_adu._psf_type == 'GAUSSIAN'
        kwargs_observations = {
            'exposure_time': 1,
            'sky_brightness': 1,
            'magnitude_zero_point': self.magnitude_zero_point,
            'num_exposures': 1,
            'seeing': 1,
            'psf_type': 'PIXEL'
        }
        kwargs_data = util.merge_dicts(self.kwargs_instrument,
                                       kwargs_observations)
        data_pixel = SingleBand(data_count_unit='ADU', **kwargs_data)
        assert data_pixel._psf_type == 'PIXEL'

        kwargs_observations = {
            'exposure_time': 1,
            'sky_brightness': 1,
            'magnitude_zero_point': self.magnitude_zero_point,
            'num_exposures': 1,
            'seeing': 1,
            'psf_type': 'NONE'
        }
        kwargs_data = util.merge_dicts(self.kwargs_instrument,
                                       kwargs_observations)
        data_pixel = SingleBand(data_count_unit='ADU', **kwargs_data)
        assert data_pixel._psf_type == 'NONE'