예제 #1
0
def test_initialize_fneq(Case, dtype_device):
    dtype, device = dtype_device
    lattice = Lattice(D2Q9, device, dtype)
    if Case == TaylorGreenVortex3D:
        lattice = Lattice(D3Q27, dtype=dtype, device=device)
    flow = Case(resolution=16, reynolds_number=1000, mach_number=0.01, lattice=lattice)
    collision = BGKCollision(lattice, tau=flow.units.relaxation_parameter_lu)
    streaming = StandardStreaming(lattice)
    simulation_neq = Simulation(flow=flow, lattice=lattice, collision=collision, streaming=streaming)

    pre_rho = lattice.rho(simulation_neq.f)
    pre_u = lattice.u(simulation_neq.f)

    simulation_neq.initialize_f_neq()

    post_rho = lattice.rho(simulation_neq.f)
    post_u = lattice.u(simulation_neq.f)
    assert(torch.allclose(pre_rho,post_rho,1e-6))
    assert(torch.allclose(pre_u,post_u))

    if Case == TaylorGreenVortex2D:
        error_reporter_neq = ErrorReporter(lattice, flow, interval=1, out=None)
        error_reporter_eq = ErrorReporter(lattice, flow, interval=1, out=None)
        simulation_eq = Simulation(flow=flow, lattice=lattice, collision=collision, streaming=streaming)
        simulation_neq.reporters.append(error_reporter_neq)
        simulation_eq.reporters.append(error_reporter_eq)

        simulation_neq.step(10)
        simulation_eq.step(10)
        error_u, error_p = np.mean(np.abs(error_reporter_neq.out), axis=0).tolist()
        error_u_eq, error_p_eq = np.mean(np.abs(error_reporter_eq.out), axis=0).tolist()

        assert(error_u < error_u_eq)
예제 #2
0
def test_initialization(dtype_device, use_jacobi):
    dtype, device = dtype_device
    lattice = Lattice(D2Q9, device, dtype)
    flow = TaylorGreenVortex2D(resolution=24,
                               reynolds_number=10,
                               mach_number=0.05,
                               lattice=lattice)
    collision = BGKCollision(lattice, tau=flow.units.relaxation_parameter_lu)
    streaming = StandardStreaming(lattice)
    simulation = Simulation(flow=flow,
                            lattice=lattice,
                            collision=collision,
                            streaming=streaming)
    # set initial pressure to 0 everywhere
    p, u = flow.initial_solution(flow.grid)
    u0 = lattice.convert_to_tensor(flow.units.convert_velocity_to_lu(u))
    rho0 = lattice.convert_to_tensor(np.ones_like(u0[0, ...].cpu()))
    simulation.f = lattice.equilibrium(rho0, u0)
    if use_jacobi:
        simulation.initialize_pressure(1000, 1e-6)
        num_iterations = 0
    else:
        num_iterations = simulation.initialize(500, 1e-3)
    piter = lattice.convert_to_numpy(
        flow.units.convert_density_lu_to_pressure_pu(lattice.rho(
            simulation.f)))
    # assert that pressure is converged up to 0.05 (max p
    assert piter == pytest.approx(p, rel=0.0, abs=5e-2)
    assert num_iterations < 500
예제 #3
0
파일: test_util.py 프로젝트: McBs/lettuce
def test_grid_fine_to_coarse_3d():
    lattice = Lattice(D3Q27, 'cpu', dtype=torch.double)

    flow_f = TaylorGreenVortex3D(40, 1600, 0.15, lattice)
    collision_f = BGKCollision(lattice,
                               tau=flow_f.units.relaxation_parameter_lu)
    sim_f = Simulation(flow_f, lattice, collision_f, streaming=None)

    flow_c = TaylorGreenVortex3D(20, 1600, 0.15, lattice)
    collision_c = BGKCollision(lattice,
                               tau=flow_c.units.relaxation_parameter_lu)
    sim_c = Simulation(flow_c, lattice, collision_c, streaming=None)

    f_c = grid_fine_to_coarse(lattice, sim_f.f,
                              flow_f.units.relaxation_parameter_lu,
                              flow_c.units.relaxation_parameter_lu)

    p_c_init, u_c_init = flow_c.initial_solution(flow_c.grid)
    rho_c_init = flow_c.units.convert_pressure_pu_to_density_lu(p_c_init)
    u_c_init = flow_c.units.convert_velocity_to_lu(u_c_init)
    shear_c_init = lattice.shear_tensor(sim_c.f)
    shear_c = lattice.shear_tensor(f_c)

    assert np.isclose(lattice.u(f_c).cpu().numpy(), u_c_init).all()
    assert np.isclose(lattice.rho(f_c).cpu().numpy(), rho_c_init).all()
    assert torch.isclose(f_c, sim_c.f).all()
    assert torch.isclose(shear_c_init, shear_c).all()
예제 #4
0
def test_equilibrium_pressure_outlet(dtype_device):
    dtype, device = dtype_device
    lattice = Lattice(D2Q9, dtype=dtype, device=device)

    class MyObstacle(Obstacle2D):
        @property
        def boundaries(self, *args):
            x, y = self.grid
            return [
                EquilibriumBoundaryPU(
                    np.abs(x) < 1e-6, self.units.lattice, self.units,
                    np.array([self.units.characteristic_velocity_pu, 0])),
                EquilibriumOutletP(self.units.lattice, [0, -1]),
                EquilibriumOutletP(self.units.lattice, [0, 1]),
                EquilibriumOutletP(self.units.lattice, [1, 0]),
                BounceBackBoundary(self.mask, self.units.lattice)
            ]

    flow = MyObstacle(30,
                      30,
                      reynolds_number=10,
                      mach_number=0.1,
                      lattice=lattice,
                      char_length_lu=10)
    mask = np.zeros_like(flow.grid[0], dtype=np.bool)
    mask[10:20, 10:20] = 1
    flow.mask = mask
    simulation = Simulation(
        flow, lattice,
        RegularizedCollision(lattice, flow.units.relaxation_parameter_lu),
        StandardStreaming(lattice))
    simulation.step(20)
    rho = lattice.rho(simulation.f)
    u = lattice.u(simulation.f)
    feq = lattice.equilibrium(torch.ones_like(rho), u)
    p = flow.units.convert_density_lu_to_pressure_pu(rho)
    zeros = torch.zeros_like(p[0, -1, :])
    assert torch.allclose(zeros, p[:, -1, :], rtol=0, atol=1e-4)
    assert torch.allclose(zeros, p[:, :, 0], rtol=0, atol=1e-4)
    assert torch.allclose(zeros, p[:, :, -1], rtol=0, atol=1e-4)
    assert torch.allclose(feq[:, -1, 1:-1], feq[:, -2, 1:-1])
예제 #5
0
    simulation_p = Simulation(flow=flow_coarse,
                              lattice=lattice,
                              collision=collision_coarse,
                              streaming=streaming)
    simulation_p.flow.units.characteristic_velocity_pu = simulation.flow.units.characteristic_velocity_pu
    f_reporter_r = FReporter_coarse(data_interval)
    f_reporter_r.fs = []
    f_reporter_r.ts = []
    simulation_p.reporters.append(f_reporter_r)
    simulation_p.reporters.append(enstrophy_r)
    simulation_p.reporters.append(energy_r)
    simulation_p.reporters.append(spectrum_r)
    with torch.no_grad():
        simulation_p.step(n_steps - nr_init * data_interval)

    error_rho = (loss_function(lattice.rho(f_output.cuda()),
                               lattice.rho(simulation_p.f)).item())
    error_u = (loss_function(lattice.u(f_output.cuda()),
                             lattice.u(simulation_p.f)).item())
    error_energy = (loss_function(energy(f_output.cuda()),
                                  energy(simulation_p.f)).item())
    error_enstrophy = (loss_function(enstrophy(f_output.cuda()),
                                     enstrophy(simulation_p.f)).item())

    print(
        f"{other_model.__name__:<20s}    {np.mean(error_u):.4e}  {np.mean(error_rho):.4e}  {np.mean(error_energy):.4e}  {np.mean(error_enstrophy):.4e}"
    )

    energy_data.append([[other_model.__name__], [energy_r.out]])
    enstrophy_data.append([[other_model.__name__], [enstrophy_r.out]])
    spectrum_data.append([[other_model.__name__],