############################################################################### # Generate sample data centers = [[1, 1], [0.5, 0.5], [1, -1]] X, idx = liac.random.make_gaussian(n_samples=100, centers=centers) gmm = liac.models.GMM(3, 'full') gmm.fit(X) means = gmm.means_ covs = gmm.covars_ n_clusters_ = len(means) ax = liac.plot.gca() for i in xrange(n_clusters_): pi = idx == i plot.scatter(X[pi, 0], X[pi, 1], color=liac.random.make_color(i + 10)) e = liac.plot.Gaussian(means[i], covs[i], 5, color=liac.random.make_color(i), alpha=0.75) ax.add_artist(e) x, y = means[i] liac.plot.plot(x, y, 'x', markersize=14, markeredgewidth=2, color='k') liac.plot.plot(x, y, 'x', markersize=12, markeredgewidth=2, color=liac.random.make_color(i))
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ============================================================================= import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..')) import liac from liac import plot data = liac.dataset.load('iris') targets = data.iloc[:, -1] classes = targets.unique() data = data.iloc[:, 0:-1] kpca = liac.models.KernelPCA(2, 'linear') kpca.fit(data) transformed_data = kpca.transform(data) for i, label in enumerate(classes): idx = targets == label d = transformed_data[idx] plot.scatter(d[:, 0], d[:, 1], color=liac.random.make_color(i)) plot.show()
############################################################################### # Generate sample data centers = [[1, 1], [0.5, 0.5], [1, -1]] X, idx = liac.random.make_gaussian(n_samples=100, centers=centers) gmm = liac.models.GMM(3, 'full') gmm.fit(X) means = gmm.means_ covs = gmm.covars_ n_clusters_ = len(means) ax = liac.plot.gca() for i in xrange(n_clusters_): pi = idx == i plot.scatter(X[pi,0], X[pi,1], color=liac.random.make_color(i+10)) e = liac.plot.Gaussian(means[i], covs[i], 5, color=liac.random.make_color(i), alpha=0.75) ax.add_artist(e) x, y = means[i] liac.plot.plot(x, y, 'x', markersize=14, markeredgewidth=2, color='k') liac.plot.plot(x, y, 'x', markersize=12, markeredgewidth=2, color=liac.random.make_color(i)) # for i, center in enumerate(centers): # X, idx = liac.random.make_gaussian(n_samples=100, centers=center) # plot.scatter(X[:,0], X[:,1], color=liac.random.make_color(i)) plot.show()