예제 #1
0
    def __init__(self,
                 args,
                 mode,
                 dataset_path='./datasets',
                 classes=5,
                 crop_dim=(32, 32, 32),
                 split_idx=10,
                 samples=10,
                 load=False):
        """
        :param mode: 'train','val','test'
        :param dataset_path: root dataset folder
        :param crop_dim: subvolume tuple
        :param split_idx: 1 to 10 values
        :param samples: number of sub-volumes that you want to create
        """
        self.mode = mode
        self.root = str(dataset_path)
        self.training_path = self.root + '/MICCAI_BraTS_2018_Data_Training/'
        self.testing_path = self.root + ' '
        self.CLASSES = 4
        self.full_vol_dim = (240, 240, 155)  # slice, width, height
        self.crop_size = crop_dim
        self.threshold = args.threshold
        self.normalization = args.normalization
        self.augmentation = args.augmentation
        self.list = []
        self.samples = samples
        self.full_volume = None
        self.classes = classes
        self.save_name = self.root + '/MICCAI_BraTS_2018_Data_Training/brats2018-list-' + mode + '-samples-' + str(
            samples) + '.txt'
        if self.augmentation:
            self.transform = augment3D.RandomChoice(transforms=[
                augment3D.GaussianNoise(mean=0, std=0.01),
                augment3D.RandomFlip(),
                augment3D.ElasticTransform()
            ],
                                                    p=0.5)
        if load:
            ## load pre-generated data
            list_IDsT1 = sorted(
                glob.glob(os.path.join(self.training_path,
                                       '*GG/*/*t1.nii.gz')))
            self.affine = img_loader.load_affine_matrix(list_IDsT1[0])
            self.list = utils.load_list(self.save_name)
            return

        subvol = '_vol_' + str(crop_dim[0]) + 'x' + str(
            crop_dim[1]) + 'x' + str(crop_dim[2])
        self.sub_vol_path = self.root + '/MICCAI_BraTS_2018_Data_Training/generated/' + mode + subvol + '/'
        utils.make_dirs(self.sub_vol_path)

        list_IDsT1 = sorted(
            glob.glob(os.path.join(self.training_path, '*GG/*/*t1.nii.gz')))
        list_IDsT1ce = sorted(
            glob.glob(os.path.join(self.training_path, '*GG/*/*t1ce.nii.gz')))
        list_IDsT2 = sorted(
            glob.glob(os.path.join(self.training_path, '*GG/*/*t2.nii.gz')))
        list_IDsFlair = sorted(
            glob.glob(os.path.join(self.training_path,
                                   '*GG/*/*_flair.nii.gz')))
        labels = sorted(
            glob.glob(os.path.join(self.training_path, '*GG/*/*_seg.nii.gz')))
        # print(len(list_IDsT1),len(list_IDsT2),len(list_IDsFlair),len(labels))

        self.affine = img_loader.load_affine_matrix(list_IDsT1[0])

        if self.mode == 'train':
            list_IDsT1 = list_IDsT1[:split_idx]
            list_IDsT1ce = list_IDsT1ce[:split_idx]
            list_IDsT2 = list_IDsT2[:split_idx]
            list_IDsFlair = list_IDsFlair[:split_idx]
            labels = labels[:split_idx]

            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT1ce,
                                           list_IDsT2,
                                           list_IDsFlair,
                                           labels,
                                           dataset_name="brats2018",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path,
                                           normalization=self.normalization,
                                           th_percent=self.threshold)
        elif self.mode == 'val':
            list_IDsT1 = list_IDsT1[split_idx:]
            list_IDsT1ce = list_IDsT1ce[split_idx:]
            list_IDsT2 = list_IDsT2[split_idx:]
            list_IDsFlair = list_IDsFlair[split_idx:]
            labels = labels[split_idx:]
            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT1ce,
                                           list_IDsT2,
                                           list_IDsFlair,
                                           labels,
                                           dataset_name="brats2018",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path,
                                           normalization=self.normalization,
                                           th_percent=self.threshold)

        elif self.mode == 'test':
            self.list_IDsT1 = sorted(
                glob.glob(os.path.join(self.testing_path, '*GG/*/*t1.nii.gz')))
            self.list_IDsT1ce = sorted(
                glob.glob(os.path.join(self.testing_path,
                                       '*GG/*/*t1ce.nii.gz')))
            self.list_IDsT2 = sorted(
                glob.glob(os.path.join(self.testing_path, '*GG/*/*t2.nii.gz')))
            self.list_IDsFlair = sorted(
                glob.glob(
                    os.path.join(self.testing_path, '*GG/*/*_flair.nii.gz')))
            self.labels = None

        utils.save_list(self.save_name, self.list)
예제 #2
0
    def __init__(self,
                 args,
                 mode,
                 dataset_path='../../datasets',
                 classes=4,
                 crop_dim=(128, 128, 128),
                 split_idx=204,
                 samples=10,
                 load=False):
        """
        :param mode: 'train','val','test'
        :param dataset_path: root dataset folder
        :param crop_dim: subvolume tuple
        :param split_idx: 1 to 10 values
        :param samples: number of sub-volumes that you want to create
        """
        self.mode = mode
        self.root = str(dataset_path)
        self.training_path = self.root + '/brats2019/MICCAI_BraTS_2019_Data_Training/train_generated'
        self.testing_path = self.root + '/brats2019/MICCAI_BraTS_2019_Data_Validation/'
        self.full_vol_dim = (128, 128, 128)  # slice, width, height
        self.crop_size = crop_dim
        self.threshold = args.threshold
        self.normalization = args.normalization
        self.augmentation = args.augmentation
        self.list = []
        self.samples = samples
        self.full_volume = None
        self.classes = classes
        if self.augmentation:
            self.transform = augment3D.RandomChoice(transforms=[
                augment3D.GaussianNoise(mean=0, std=0.01),
                augment3D.RandomFlip(),
                augment3D.ElasticTransform()
            ],
                                                    p=0.5)
        self.save_name = self.root + '/brats2019/brats2019-list-' + mode + '-samples-' + str(
            samples) + '.txt'

        if load:
            ## load pre-generated data
            self.list = utils.load_list(self.save_name)
            list_IDsT1 = sorted(
                glob.glob(
                    os.path.join(self.training_path,
                                 '***_imgs/***_imgs_t1.npy')))
            # self.affine = img_loader.load_affine_matrix(list_IDsT1[0])
            return

        subvol = '_vol_' + str(crop_dim[0]) + 'x' + str(
            crop_dim[1]) + 'x' + str(crop_dim[2])
        self.sub_vol_path = self.root + '/brats2019/MICCAI_BraTS_2019_Data_Training/generated/' + mode + subvol + '/'

        # if not os.path.exists(self.sub_vol_path):
        #     utils.make_dirs(self.sub_vol_path)

        list_IDsT1 = sorted(
            glob.glob(
                os.path.join(self.training_path, '***_imgs/***_imgs_t1.npy')))
        list_IDsT1ce = sorted(
            glob.glob(
                os.path.join(self.training_path,
                             '***_imgs/***_imgs_t1gd.npy')))
        list_IDsT2 = sorted(
            glob.glob(
                os.path.join(self.training_path, '***_imgs/***_imgs_t2.npy')))
        list_IDsFlair = sorted(
            glob.glob(
                os.path.join(self.training_path,
                             '***_imgs/***_imgs_flair.npy')))
        labels = sorted(
            glob.glob(
                os.path.join(self.training_path, '***_seg/***_seg_label.npy')))
        # list_IDsT1, list_IDsT1ce, list_IDsT2, list_IDsFlair, labels = utils.shuffle_lists(list_IDsT1, list_IDsT1ce,
        #                                                                                   list_IDsT2,
        #                                                                                   list_IDsFlair, labels,
        #                                                                                   seed=17)
        self.affine = np.diag([1, 1, 1, 1])

        if self.mode == 'train':

            list_IDsT1 = list_IDsT1[:split_idx]
            list_IDsT1ce = list_IDsT1ce[:split_idx]
            list_IDsT2 = list_IDsT2[:split_idx]
            list_IDsFlair = list_IDsFlair[:split_idx]
            labels = labels[:split_idx]

            # self.list = create_sub_volumes(list_IDsT1, list_IDsT1ce, list_IDsT2, list_IDsFlair, labels,
            #                                dataset_name="brats2019", mode=mode, samples=samples,
            #                                full_vol_dim=self.full_vol_dim, crop_size=self.crop_size,
            #                                sub_vol_path=self.sub_vol_path, th_percent=self.threshold)
            # with open(self.save_name, "wb") as fp:
            #     pickle.dump(self.list,fp)
            with open(self.save_name, "rb") as fp:
                self.list = pickle.load(fp)
        elif self.mode == 'val':
            list_IDsT1 = list_IDsT1[split_idx:]
            list_IDsT1ce = list_IDsT1ce[split_idx:]
            list_IDsT2 = list_IDsT2[split_idx:]
            list_IDsFlair = list_IDsFlair[split_idx:]
            labels = labels[split_idx:]
            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT1ce,
                                           list_IDsT2,
                                           list_IDsFlair,
                                           labels,
                                           dataset_name="brats2019",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path,
                                           th_percent=self.threshold)
            with open(self.save_name, "wb") as fp:
                pickle.dump(self.list, fp)
            # with open(self.save_name, "rb") as fp:
            #     self.list = pickle.load(fp)
        elif self.mode == 'test':
            self.list_IDsT1 = sorted(
                glob.glob(os.path.join(self.testing_path, '*GG/*/*t1.nii.gz')))
            self.list_IDsT1ce = sorted(
                glob.glob(os.path.join(self.testing_path,
                                       '*GG/*/*t1ce.nii.gz')))
            self.list_IDsT2 = sorted(
                glob.glob(os.path.join(self.testing_path, '*GG/*/*t2.nii.gz')))
            self.list_IDsFlair = sorted(
                glob.glob(
                    os.path.join(self.testing_path, '*GG/*/*_flair.nii.gz')))
            self.labels = None
예제 #3
0
    def __init__(self,
                 args,
                 mode,
                 dataset_path='./datasets',
                 crop_dim=(32, 32, 32),
                 split_id=1,
                 samples=1000,
                 load=False):
        """
        :param mode: 'train','val','test'
        :param dataset_path: root dataset folder
        :param crop_dim: subvolume tuple
        :param fold_id: 1 to 10 values
        :param samples: number of sub-volumes that you want to create
        """
        self.mode = mode
        self.root = str(dataset_path)
        self.training_path = self.root + '/iseg_2019/iSeg-2019-Training/'
        self.testing_path = self.root + '/iseg_2019/iSeg-2019-Validation/'
        self.CLASSES = 4
        self.full_vol_dim = (144, 192, 256)  # slice, width, height
        self.crop_size = crop_dim
        self.threshold = args.threshold
        self.normalization = args.normalization
        self.augmentation = args.augmentation
        self.list = []
        self.samples = samples
        self.full_volume = None
        self.save_name = self.root + '/iseg_2019/iseg2019-list-' + mode + '-samples-' + str(
            samples) + '.txt'
        if self.augmentation:
            self.transform = augment3D.RandomChoice(transforms=[
                augment3D.GaussianNoise(mean=0, std=0.01),
                augment3D.RandomFlip(),
                augment3D.ElasticTransform()
            ],
                                                    p=0.5)
        if load:
            ## load pre-generated data
            self.list = utils.load_list(self.save_name)
            list_IDsT1 = sorted(
                glob.glob(os.path.join(self.training_path, '*T1.img')))
            self.affine = img_loader.load_affine_matrix(list_IDsT1[0])
            return

        subvol = '_vol_' + str(crop_dim[0]) + 'x' + str(
            crop_dim[1]) + 'x' + str(crop_dim[2])
        self.sub_vol_path = self.root + '/iseg_2019/generated/' + mode + subvol + '/'
        utils.make_dirs(self.sub_vol_path)

        list_IDsT1 = sorted(
            glob.glob(os.path.join(self.training_path, '*T1.img')))
        list_IDsT2 = sorted(
            glob.glob(os.path.join(self.training_path, '*T2.img')))
        labels = sorted(
            glob.glob(os.path.join(self.training_path, '*label.img')))
        self.affine = img_loader.load_affine_matrix(list_IDsT1[0])

        if self.mode == 'train':
            list_IDsT1 = list_IDsT1[:split_id]
            list_IDsT2 = list_IDsT2[:split_id]
            labels = labels[:split_id]
            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT2,
                                           labels,
                                           dataset_name="iseg2019",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path,
                                           th_percent=self.threshold)

        elif self.mode == 'val':
            list_IDsT1 = list_IDsT1[split_id:]
            list_IDsT2 = list_IDsT2[:split_id:]
            labels = labels[split_id:]
            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT2,
                                           labels,
                                           dataset_name="iseg2019",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path,
                                           th_percent=self.threshold)

            self.full_volume = get_viz_set(list_IDsT1,
                                           list_IDsT2,
                                           labels,
                                           dataset_name="iseg2019")

        elif self.mode == 'test':
            self.list_IDsT1 = sorted(
                glob.glob(os.path.join(self.testing_path, '*T1.img')))
            self.list_IDsT2 = sorted(
                glob.glob(os.path.join(self.testing_path, '*T2.img')))
            self.labels = None
            # todo inference here

        utils.save_list(self.save_name, self.list)
예제 #4
0
from lib.medloaders.medical_loader_utils import generate_padded_subvolumes
import torch
import matplotlib.pyplot as plt
import lib.augment3D as augment

size = 32
from lib.medloaders.medical_image_process import load_medical_image

# t1 = torch.randn(size,size,size).numpy()
# t2  = torch.randn(size,size,size).numpy()
b = torch.randn(size, size, size).numpy()

t1 = load_medical_image(
    '.././datasets/iseg_2017/iSeg-2017-Training/subject-1-T1.hdr').squeeze(
    ).numpy()
label = load_medical_image(
    '.././datasets/iseg_2017/iSeg-2017-Training/subject-1-label.img').squeeze(
    ).numpy()
f, axarr = plt.subplots(4, 1)

axarr[0].imshow(t1[70, :, :])
axarr[1].imshow(label[70, :, :])

c = augment.RandomChoice(transforms=[augment.GaussianNoise(mean=0, std=0.1)])
[t1], label = c([t1], label)

axarr[2].imshow(t1[70, :, :])
axarr[3].imshow(label[70, :, :])

plt.show()