def classification_accuracy_brainplot_mousephase(dataDB, exclQueryLst, fontsize=20, trialType='auto', **kwargs): assert 'intervName' in kwargs.keys(), 'Requires phases' dps = DataParameterSweep(dataDB, exclQueryLst, mousename='auto', **kwargs) nMice = dps.param_size('mousename') nInterv = dps.param_size('intervName') trialType = trialType if trialType != 'auto' else dataDB.get_trial_type_names( ) for paramVals, dfTmp in dps.sweepDF.groupby( dps.invert_param(['mousename', 'intervName'])): plotSuffix = param_vals_to_suffix(paramVals) print(plotSuffix) fig, ax = plt.subplots(nrows=nMice, ncols=nInterv, figsize=(4 * nInterv, 4 * nMice)) for mousename, dfMouse in dfTmp.groupby(['mousename']): iMouse = dps.param_index('mousename', mousename) ax[iMouse][0].set_ylabel(mousename, fontsize=fontsize) for idx, row in dfMouse.iterrows(): intervName = row['intervName'] iInterv = dps.param_index('intervName', intervName) ax[0][iInterv].set_title(intervName, fontsize=fontsize) kwargsThis = pd_row_to_kwargs(row, parseNone=True, dropKeys=['mousename']) dataRPLst = [ get_data_avg(dataDB, mousename, avgAxes=1, **kwargsThis) for tt in trialType ] # Split two textures dataT1 = np.concatenate([dataRPLst[0], dataRPLst[1]]) dataT2 = np.concatenate([dataRPLst[2], dataRPLst[3]]) svcAcc = [ classification_accuracy_weighted(x[:, None], y[:, None]) for x, y in zip(dataT1.T, dataT2.T) ] dataDB.plot_area_values(fig, ax[iMouse][iInterv], svcAcc, vmin=0.5, vmax=1.0, cmap='jet') prefixPath = 'pics/classification_accuracy/brainplot_mousephase/' make_path(prefixPath) plt.savefig(prefixPath + plotSuffix + '.svg') plt.close()
def activity_brainplot_mousephase_submouse(dataDB, exclQueryLst=None, vmin=None, vmax=None, fontsize=20, dpi=200, **kwargs): assert 'intervName' in kwargs.keys(), 'Requires phases' dps = DataParameterSweep(dataDB, exclQueryLst, mousename='auto', **kwargs) nMice = dps.param_size('mousename') nInterv = dps.param_size('intervName') for paramVals, dfTmp in dps.sweepDF.groupby( dps.invert_param(['mousename', 'intervName'])): plotSuffix = param_vals_to_suffix(paramVals) print(plotSuffix) fig, ax = plt.subplots(nrows=nMice, ncols=nInterv, figsize=(4 * nInterv, 4 * nMice), tight_layout=True) for intervName, dfInterv in dfTmp.groupby(['intervName']): iInterv = dps.param_index('intervName', intervName) ax[0][iInterv].set_title(intervName, fontsize=fontsize) rezDict = {} for idx, row in dfInterv.iterrows(): mousename = row['mousename'] kwargsThis = pd_row_to_kwargs(row, parseNone=True, dropKeys=['mousename']) rezDict[mousename] = get_data_avg(dataDB, mousename, avgAxes=(0, 1), **kwargsThis) dataPsub = np.mean(list(rezDict.values()), axis=0) for idx, row in dfInterv.iterrows(): mousename = row['mousename'] iMouse = dps.param_index('mousename', mousename) ax[iMouse][0].set_ylabel(mousename, fontsize=fontsize) dataPDelta = rezDict[mousename] - dataPsub haveColorBar = iInterv == nInterv - 1 dataDB.plot_area_values(fig, ax[iMouse][iInterv], dataPDelta, vmin=vmin, vmax=vmax, cmap='jet', haveColorBar=haveColorBar) prefixPath = 'pics/activity/brainplot_mousephase/submouse/' make_path(prefixPath) plt.savefig(prefixPath + plotSuffix + '.svg') plt.close()
def activity_brainplot_mouse(dataDB, xParamName, exclQueryLst=None, vmin=None, vmax=None, fontsize=20, dpi=200, **kwargs): assert xParamName in kwargs.keys(), 'Requires ' + xParamName dps = DataParameterSweep(dataDB, exclQueryLst, mousename='auto', **kwargs) nMice = dps.param_size('mousename') nXParam = dps.param_size(xParamName) for paramVals, dfTmp in dps.sweepDF.groupby( dps.invert_param(['mousename', xParamName])): plotSuffix = param_vals_to_suffix(paramVals) print(plotSuffix) fig, ax = plt.subplots(nrows=nMice, ncols=nXParam, figsize=(4 * nXParam, 4 * nMice), tight_layout=True) for mousename, dfMouse in dfTmp.groupby(['mousename']): iMouse = dps.param_index('mousename', mousename) ax[iMouse][0].set_ylabel(mousename, fontsize=fontsize) for idx, row in dfMouse.iterrows(): xParamVal = row[xParamName] iXParam = dps.param_index(xParamName, xParamVal) ax[0][iXParam].set_title(xParamVal, fontsize=fontsize) kwargsThis = pd_row_to_kwargs(row, parseNone=True, dropKeys=['mousename']) dataLst = dataDB.get_neuro_data({'mousename': mousename}, **kwargsThis) dataRSP = np.concatenate(dataLst, axis=0) dataP = np.mean(dataRSP, axis=(0, 1)) haveColorBar = iXParam == nXParam - 1 dataDB.plot_area_values(fig, ax[iMouse][iXParam], dataP, vmin=vmin, vmax=vmax, cmap='jet', haveColorBar=haveColorBar) prefixPath = 'pics/activity/brainplot_' + xParamName + '/' make_path(prefixPath) plt.savefig(prefixPath + plotSuffix + '.svg') plt.close()
def activity_brainplot_mousephase_subpre(dataDB, exclQueryLst=None, vmin=None, vmax=None, fontsize=20, dpi=200, **kwargs): assert 'intervName' in kwargs.keys(), 'Requires phases' dps = DataParameterSweep(dataDB, exclQueryLst, mousename='auto', datatype=['bn_session'], **kwargs) nMice = dps.param_size('mousename') nInterv = dps.param_size('intervName') for paramVals, dfTmp in dps.sweepDF.groupby( dps.invert_param(['mousename', 'intervName'])): plotSuffix = param_vals_to_suffix(paramVals) print(plotSuffix) fig, ax = plt.subplots(nrows=nMice, ncols=nInterv, figsize=(4 * nInterv, 4 * nMice), tight_layout=True) for mousename, dfMouse in dfTmp.groupby(['mousename']): iMouse = dps.param_index('mousename', mousename) ax[iMouse][0].set_ylabel(mousename, fontsize=fontsize) kwargsPre = pd_row_to_kwargs(pd_first_row(dfMouse)[1], parseNone=True, dropKeys=['mousename', 'intervName']) kwargsPre['intervName'] = 'PRE' dataPPre = get_data_avg(dataDB, mousename, avgAxes=(0, 1), **kwargsPre) for idx, row in dfMouse.iterrows(): intervName = row['intervName'] iInterv = dps.param_index('intervName', intervName) if intervName != 'PRE': ax[0][iInterv].set_title(intervName, fontsize=fontsize) kwargsThis = pd_row_to_kwargs(row, parseNone=True, dropKeys=['mousename']) dataP = get_data_avg(dataDB, mousename, avgAxes=(0, 1), **kwargsThis) dataPDelta = dataP - dataPPre haveColorBar = iInterv == nInterv - 1 dataDB.plot_area_values(fig, ax[iMouse][iInterv], dataPDelta, vmin=vmin, vmax=vmax, cmap='jet', haveColorBar=haveColorBar) prefixPath = 'pics/activity/brainplot_mousephase/subpre/' make_path(prefixPath) plt.savefig(prefixPath + plotSuffix + '.svg') plt.close()
def plot_corr_mousephase_submouse(dataDB, mc, estimator, nDropPCA=None, dropChannels=None, exclQueryLst=None, corrStrategy='mean', fontsize=20, **kwargs): assert 'intervName' in kwargs.keys(), 'Requires phases' dps = DataParameterSweep(dataDB, exclQueryLst, mousename='auto', **kwargs) nMice = dps.param_size('mousename') nInterv = dps.param_size('intervName') for paramVals, dfTmp in dps.sweepDF.groupby( dps.invert_param(['mousename', 'intervName'])): plotSuffix = param_vals_to_suffix(paramVals) print(plotSuffix) figCorr, axCorr = plt.subplots(nrows=nMice, ncols=nInterv, figsize=(4 * nInterv, 4 * nMice)) for intervName, dfInterv in dfTmp.groupby(['intervName']): iInterv = dps.param_index('intervName', intervName) axCorr[0][iInterv].set_title(intervName, fontsize=fontsize) rezDict = {} for idx, row in dfInterv.iterrows(): mousename = row['mousename'] kwargsThis = pd_row_to_kwargs(row, parseNone=True, dropKeys=['mousename']) channelLabels, rez2D = calc_corr_mouse( dataDB, mc, mousename, strategy=corrStrategy, nDropPCA=nDropPCA, dropChannels=dropChannels, estimator=estimator, **kwargsThis) rezDict[mousename] = rez2D # Plot correlations rezMean = np.mean(list(rezDict.values()), axis=0) for mousename, rezMouse in rezDict.items(): iMouse = dps.param_index('mousename', mousename) axCorr[iMouse][0].set_ylabel(mousename, fontsize=fontsize) if mousename in rezDict.keys(): haveColorBar = iInterv == nInterv - 1 imshow(figCorr, axCorr[iMouse][iInterv], rezMouse - rezMean, title='corr', haveColorBar=haveColorBar, limits=[-1, 1], cmap='RdBu_r') # Save image prefixPath = 'pics/corr/mousephase/dropPCA_' + str( nDropPCA) + '/submouse/' make_path(prefixPath) figCorr.savefig(prefixPath + 'corr_' + plotSuffix + '.svg') plt.close()
def plot_corr_mouse(dataDB, mc, estimator, xParamName, nDropPCA=None, dropChannels=None, haveBrain=False, haveMono=True, corrStrategy='mean', exclQueryLst=None, thrMono=0.4, clusterParam=0.5, fontsize=20, **kwargs): assert xParamName in ['intervName', 'trialType'], 'Unexpected parameter' assert xParamName in kwargs.keys(), 'Requires ' + xParamName dps = DataParameterSweep(dataDB, exclQueryLst, mousename='auto', **kwargs) nMice = dps.param_size('mousename') nXParam = dps.param_size(xParamName) for paramVals, dfTmp in dps.sweepDF.groupby( dps.invert_param(['mousename', xParamName])): plotSuffix = param_vals_to_suffix(paramVals) print(plotSuffix) figCorr, axCorr = plt.subplots(nrows=nMice, ncols=nXParam, figsize=(4 * nXParam, 4 * nMice), tight_layout=True) figClust, axClust = plt.subplots(nrows=nMice, ncols=nXParam, figsize=(4 * nXParam, 4 * nMice), tight_layout=True) if haveBrain: figBrain, axBrain = plt.subplots(nrows=nMice, ncols=nXParam, figsize=(4 * nXParam, 4 * nMice), tight_layout=True) if haveMono: figMono, axMono = plt.subplots(nrows=nMice, ncols=nXParam, figsize=(4 * nXParam, 4 * nMice), tight_layout=True) for mousename, dfMouse in dfTmp.groupby(['mousename']): iMouse = dps.param_index('mousename', mousename) axCorr[iMouse][0].set_ylabel(mousename, fontsize=fontsize) axClust[iMouse][0].set_ylabel(mousename, fontsize=fontsize) if haveBrain: axBrain[iMouse][0].set_ylabel(mousename, fontsize=fontsize) if haveMono: axMono[iMouse][0].set_ylabel(mousename, fontsize=fontsize) for idx, row in dfMouse.iterrows(): xParamVal = row[xParamName] iXParam = dps.param_index(xParamName, xParamVal) axCorr[0][iXParam].set_title(xParamVal, fontsize=fontsize) axClust[0][iXParam].set_title(xParamVal, fontsize=fontsize) if haveBrain: axBrain[0][iXParam].set_title(xParamVal, fontsize=fontsize) if haveMono: axMono[0][iXParam].set_title(xParamVal, fontsize=fontsize) kwargsThis = pd_row_to_kwargs(row, parseNone=True, dropKeys=['mousename']) channelLabels, rez2D = calc_corr_mouse( dataDB, mc, mousename, strategy=corrStrategy, nDropPCA=nDropPCA, dropChannels=dropChannels, estimator=estimator, **kwargsThis) haveColorBar = iXParam == nXParam - 1 # Plot correlations imshow(figCorr, axCorr[iMouse][iXParam], rez2D, limits=[-1, 1], cmap='jet', haveColorBar=haveColorBar) # Plot clustering clusters = cluster_dist_matrix_max(rez2D, clusterParam, method='Affinity') cluster_plot(figClust, axClust[iMouse][iXParam], rez2D, clusters, channelLabels, limits=[-1, 1], cmap='jet', haveColorBar=haveColorBar) if haveBrain: cluster_brain_plot(figBrain, axBrain[iMouse][iXParam], dataDB, clusters, dropChannels=dropChannels) if haveMono: _plot_corr_1D(figMono, axMono[iMouse][iXParam], channelLabels, rez2D, thrMono) # Save image prefixPrefixPath = 'pics/corr/mouse' + xParamName + '/dropPCA_' + str( nDropPCA) + '/' prefixPath = prefixPrefixPath + 'corr/' make_path(prefixPath) figCorr.savefig(prefixPath + 'corr_' + plotSuffix + '.svg') plt.close(figCorr) prefixPath = prefixPrefixPath + 'clust/' make_path(prefixPath) figClust.savefig(prefixPath + 'clust_' + plotSuffix + '.svg') plt.close(figClust) if haveBrain: prefixPath = prefixPrefixPath + 'clust_brainplot/' make_path(prefixPath) figBrain.savefig(prefixPath + 'clust_brainplot_' + plotSuffix + '.svg') plt.close(figBrain) if haveMono: prefixPath = prefixPrefixPath + '1D/' make_path(prefixPath) figMono.savefig(prefixPath + '1Dplot_' + plotSuffix + '.svg') plt.close(figMono)