예제 #1
0
def load_extras(sets):
    assert(type(sets) is list)
    extra = gen_input.read_data_sets(DATA_PATH + "extra_32x32_" + str(sets[0]) + ".mat", [1, 0, 0])
    for i in range(1, len(sets)):
        num = sets[i]
        dataset = gen_input.read_data_sets(DATA_PATH + "extra_32x32_" + str(num) + ".mat", [1, 0, 0])
        np.concatenate((extra.train.images, dataset.train.images), axis=0)
        np.concatenate((extra.train.labels, dataset.train.labels), axis=0)

    return extra
예제 #2
0
def main():
    # div_fractions = [0.80, 0.0, 0.20]  # Fractions to divide data into the train, valid, and test sets
    train = gen_input.read_data_sets(DATA_PATH + "train_32x32.mat", [1, 0, 0], False, gen_input.reflect)
    test = gen_input.read_data_sets(DATA_PATH + "test_32x32.mat", [0, 0, 1], False, gen_input.reflect)
    #extra_train = load_extras(range(1,6))
    Xtr = train.train.images.reshape(-1, IMAGE_DIMENSION, IMAGE_DIMENSION, 3)
    Ytr = train.train.labels
    #Xtr = np.concatenate((Xtr, extra_train.train.images.reshape(IMAGE_DIMENSION,IMAGE_DIMENSION,3)), axis=0)
    #Ytr = np.concatenate((Ytr, extra_train.train.labels), axis=0)
    Xte = test.test.images.reshape(-1, IMAGE_DIMENSION, IMAGE_DIMENSION, 3)
    Yte = test.test.labels
    print "Loaded data!"

    # Convert to grayscale
    Xtr = rgb_to_grayscale(Xtr).reshape(-1, IMAGE_DIMENSION * IMAGE_DIMENSION)
    Xte = rgb_to_grayscale(Xte).reshape(-1, IMAGE_DIMENSION * IMAGE_DIMENSION)

    # Xtr = normalize(Xtr)
    # Xte = normalize(Xte)

    # Y attribute stores data projects into PCA space using all eigen vectors.
    # The eigen vectors are in decreasing order, so PCA().Y[:,0:x] returns the data projected to x-dimensional PCA space
    pca_train = PCA(Xtr)
    pca_test = PCA(Xte)
    print "eigenvector top weights ", pca_train.fracs[0:20]

    define_plot(x_title="K", y_title="Accuracy (%)",
                title="Grayscale Test Accuracy vs K for Nearest Neighbors using PCA", label_prefix="K=")
    print "1b"
    plt.xlim((min(Ks) - 1, max(Ks) + 1))
    min_accuracy = 1.0
    max_accuracy = 0
    all_accuracies = []
    for reduced_dimension in REDUCED_DIMENSIONS:
        print "starting with PCA dim ", reduced_dimension
        Xtr = pca_train.Y[:, 0:reduced_dimension]
        Xte = pca_test.Y[:, 0:reduced_dimension]
        print "Done trimming to PCA dimension"

        num_dimensions = Xtr.shape[1]

        # Graph Input
        pl_x_train = tf.placeholder("float", shape=[None, num_dimensions])
        pl_x_test = tf.placeholder("float", shape=[num_dimensions])

        # Nearest Neighbor calculation using L1 Norm Distance
        # distance = tf.reduce_sum(tf.abs(tf.add(pl_x_train, tf.neg(pl_x_test))), reduction_indices=1)

        # Nearest Neighbor calculation using L2 Norm Distance, sqrt necessary for Inverse Weight function
        distance = tf.reduce_sum(tf.sqrt(tf.add(tf.mul(pl_x_train, pl_x_train), tf.mul(pl_x_test, pl_x_test))), reduction_indices=1)

        neg_distance = tf.neg(distance)  # MIN(distance) = MAX(neg_distance)

        # Couldn't get this to work: Wanted to use top_k then use scipy's mode method in loop below
        # largest_neg_distance, top_classes = tf.nn.top_k(neg_distances, K)
        # Predict: Get index of the most frequent class (Nearest Neighbor)
        # prediction = tf.argmin(distance, 0)

        print "Init Session..."
        # Get session ready
        init = tf.initialize_all_variables()
        session = tf.Session()
        session.run(init)

        print "Starting training/testing ", len(Xte), " examples"
        accuracies = []
        used_ks = []
        for K in Ks:
            print "Starting K = ", K
            num_correct = 0
            # loop over test data
            for i in range(len(Xte)):
                # Get nearest neighbor
                # nn_index = session.run(prediction, feed_dict={pl_x_train: Xtr, pl_x_test: Xte[i, :]})
                neg_distances = session.run(neg_distance, feed_dict={pl_x_train: Xtr, pl_x_test: Xte[i, :]})
                top_classes_index = np.argpartition(neg_distances, -K)[-K:]



                ### For Inverse weighting
                max_weight = 0
                top_class = 0
                inverse_weights = 1.0 / -1.0 * neg_distances[top_classes_index]
                for cls in range(0,10):
                    ind,count = np.where(Ytr[top_classes_index] == [cls])
                    cls_total = np.sum(inverse_weights[ind])
                    if cls_total == max_weight:
                        top_class = cls
                ###
                '''
                ### For weights = 1, (voting scheme)
                top_class, count = mode(Ytr[top_classes_index])
                top_class = top_class[0][0]  # Unbox from matrix
                ###
                '''

                # Get nearest neighbor class label and compare it to its true label
                if top_class == Yte[i][0]:
                    num_correct += 1

            accuracy = float(num_correct) * 100.0 / len(Xte)
            if accuracy > max_accuracy:
                max_accuracy = accuracy
            elif accuracy < min_accuracy:
                min_accuracy = accuracy

            print "Accuracy:", accuracy
            accuracies.append(accuracy)
            used_ks.append(K)
            plot_accuracy(used_ks, accuracies)
            all_accuracies.append(accuracies)

        plot_accuracy(Ks, accuracies, label="PCA " + str(reduced_dimension))
    print Ks
    print all_accuracies
    plt.ylim((min_accuracy - 0.1 * min_accuracy, max_accuracy + 0.1 * max_accuracy))
    plt.legend(loc=0)
    plt.ioff()
    raw_input('Press Enter to exit.')
    plt.savefig('./plots/knn/grayscale2.png', bbox_inches='tight')
예제 #3
0
def main():
    trim = 4
    train = gen_input.read_data_sets(DATA_PATH + "train_32x32.mat", [1, 0, 0], False, gen_input.reflect)
    test = gen_input.read_data_sets(DATA_PATH + "test_32x32.mat", [0, 0, 1], False, gen_input.reflect)
    #extra_train = load_extras(range(1,6))
    Xtr = train.train.images.reshape(-1, IMAGE_DIMENSION, IMAGE_DIMENSION, 3)
    Ytr = train.train.labels

    #Xtr = np.concatenate((Xtr, extra_train.train.images), axis=0)
    #Ytr = np.concatenate((Ytr, extra_train.train.labels), axis=0)
    Xte = test.test.images.reshape(-1, IMAGE_DIMENSION, IMAGE_DIMENSION, 3)
    Yte = test.test.labels
    '''
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)
    Xtr = mnist.train.images
    Ytr = mnist.train.labels
    Xte = mnist.test.images
    Yte = mnist.test.labels
    '''
    # Ytr_2 = np.where(Ytr == 0)[0]
    # Ytr_3 = np.where(Ytr == 7)[0]
    # indices = np.concatenate((Ytr_2, Ytr_3))
    # Ytr = Ytr[indices]
    # Xtr = Xtr[indices,:]#,:,:]
    # Yte_2 = np.where(Yte == 0)[0]
    # Yte_3 = np.where(Yte == 7)[0]
    # indices = np.concatenate((Yte_2, Yte_3))
    # Yte = Yte[indices]
    # Xte = Xte[indices,:]#,:,:]

    print "Done loading data ", Xtr.shape[0], Xte.shape[0]


    # Convert images to grayscale
    t1 = feature_extraction.rgb_to_grayscale(Xtr)
    t2 = feature_extraction.rgb_to_grayscale(Xte)
    print "Done RGB"

    for trim in [4,6,8,10,12,14]:
        Xtr = t1[:,:,trim:-trim]
        Xte = t2[:,:,trim:-trim]

        '''
        # Extract features
        Xtr_feature, Xtr_feature_per_example, Xtr_duds = feature_extraction.all_extract_surf(Xtr)
        Xte_feature, Xte_feature_per_example, Xte_duds = feature_extraction.all_extract_surf(Xte)
        print "Done Feature Extraction ", Xtr_duds.shape, " ", Xte_duds.shape


        '''
        '''
        Xtr_feature = np.delete(Xtr_feature, Xtr_duds, axis=0)
        Xtr_feature_per_example = np.delete(Xtr_feature_per_example, Xtr_duds, axis=0)
        Xte_feature = np.delete(Xte_feature, Xte_duds, axis=0)
        Xte_feature_per_example = np.delete(Xte_feature_per_example, Xte_duds, axis=0)
        Ytr = np.delete(Ytr, Xtr_duds, axis=0)
        Yte = np.delete(Yte, Xte_duds, axis=0)

        '''

        # Extract HoG features
        Xtr_feature, Xtr_feature_per_example = feature_extraction.all_extract_hog(Xtr)
        Xte_feature, Xte_feature_per_example = feature_extraction.all_extract_hog(Xte)
        print "Done Feature Extraction "


        accuracies = {}
        for CLUSTER_COUNT in NUM_CLUSTERS:
            print "Starting config ", CLUSTER_COUNT
            fb = FeatureBag(CLUSTER_COUNT)
            #fb.set_data(Xtr_feature)
            print "Begin Fitting"
            fb.fit(Xtr_feature)
            print "Done Fitting"
            train_features = np.array(fb.predict_feature_vectors(Xtr_feature_per_example[0]))
            for i in range(1, len(Xtr_feature_per_example)):
                feature = Xtr_feature_per_example[i]
                cluster_desc = fb.predict_feature_vectors(feature)
                train_features = np.vstack((train_features, cluster_desc))

            test_features = np.array(fb.predict_feature_vectors(Xte_feature_per_example[0]))
            for i in range(1, len(Xte_feature_per_example)):
                feature = Xte_feature_per_example[i]
                cluster_desc = fb.predict_feature_vectors(feature)
                test_features = np.vstack((test_features, cluster_desc))

            print "Starting SVM"
            svm = SVM()
            svm.train(train_features, Ytr)
            predictions = svm.predict(test_features).reshape(Yte.shape)

            print "Done SVM predictions"

            # Assume Yte is dense encoding, comparing elements not arrays for equality
            accuracy = float(np.sum(predictions == Yte)) * 100.0 / Yte.shape[0]

            print "trim ", trim
            print "Accuracy = ", accuracy
            accuracies[CLUSTER_COUNT] = accuracy

        print accuracies