def test_example(cv_image, message, jointModelObject, print_message): # convert cv image into processing format # TODO: this needs to be corrected # we do not read a file # we convert from one format to the other #image = utils.imageRead(imageFile) print("Test an Example...") if cv_image == None: print_message("Unable to capture an Image.") return image = cv_image # extract color and shape of image # image_copy = copy.copy(image) cnt = utils.objectIdentification(cv_image) [x, y, w, h] = utils.boundingRectangle(cnt) pixNp = dc.findAllPixels(image, cnt, x, y, w, h) pixNp = dc.findUniquePixels(pixNp) # store image data as dictionary imageData = {'color': pixNp, 'shape': cnt} print("Printing the size of RGB value " + str(len(pixNp))) # extract keywords from message languageObject = lm(message) [positiveLanguageData, negativeLanguageData] = languageObject.process_content() print(ctime()) # Now perform the test. [totalScore, wordRanks, wordScoreDictionary] = jointModelObject.associate_words_example(positiveLanguageData, negativeLanguageData, imageData) print_message("Score: " + str(totalScore)) print_message(str(wordRanks)) print_message(str(wordScoreDictionary)) print(ctime())
def processImage(self, cv_image): image = cv_image # extract color and shape of image # image_copy = copy.copy(image) cnt = utils.objectIdentification(cv_image) [x, y, w, h] = utils.boundingRectangle(cnt) pixNp = dc.findAllPixels(image, cnt, x, y, w, h) pixNp = dc.findUniquePixels(pixNp) # store image data as dictionary imageData = {'color': pixNp, 'shape': cnt} print("Total RGB values : " + str(len(pixNp))) # Return the image information. return imageData
def add_example(cv_image, message, jointModelObject, print_message, example_count): # convert cv image into processing format # TODO: this needs to be corrected # we do not read a file # we convert from one format to the other # image = utils.imageRead(imageFile) print("Adding an Example...") if cv_image == None: print_message("Unable to capture an Image.") return image = cv_image # extract color and shape of image # image_copy = copy.copy(image) cnt = utils.objectIdentification(cv_image) [x, y, w, h] = utils.boundingRectangle(cnt) pixNp = dc.findAllPixels(image, cnt, x, y, w, h) pixNp = dc.findUniquePixels(pixNp) # store image data as dictionary imageData = {'color': pixNp, 'shape': cnt} print("Printing the size of RGB value " + str(len(pixNp))) # extract keywords from message languageObject = lm(message) [positiveLanguageData, negativeLanguageData] = languageObject.process_content() # for each keyword # add keyword, image pair to joint model for keyword in positiveLanguageData: jointModelObject.add_word_example_pair(keyword, imageData, "+") for keyword in negativeLanguageData: jointModelObject.add_word_example_pair(keyword, imageData, "-") # Send ACK to output Node that the concept has been added. # Pickle the data to store training information. # Store size is the number of examples after which the model is stored to a pickle file. store_size = 20 if ((example_count % store_size) == 0): with open('data/pickle/passive_jointModelObject.pickle', 'wb') as handle: pickle.dump(jointModelObject, handle) print_message("Example Object - Concept Added. Number of Examples Added: " + str(example_count))