예제 #1
0
def run(data_filenames, fold_filename, alpha):
    fold_filepath = '{!s}/folds/{!s}'.format(dir_path, fold_filename)
    layers_config = []
    df_train_input, df_train_output, df_test_input, df_test_output = data_rw.loadData(
        data_filenames, fold_filepath)
    model = getModel(nDInput=df_train_input.shape[1],
                     nDOutput=df_train_output.shape[1],
                     alpha=alpha)

    keras_util.fitModel(model, df_train_input.as_matrix(),
                        df_train_output.as_matrix(), layers_config, alpha,
                        "lasso", dir_path, fold_filename)

    # Save test predictions:
    test_pred = model.predict(df_test_input.as_matrix())
    df_test_pred = pd.DataFrame(data=test_pred,
                                columns=df_test_output.columns,
                                index=None)
    data_rw.savePreds(df_test_pred, dir_path, fold_filename, layers_config,
                      alpha, "lasso")

    # Save training predictions:
    train_pred = model.predict(df_train_input.as_matrix())
    df_train_pred = pd.DataFrame(data=train_pred,
                                 columns=df_train_output.columns,
                                 index=None)
    data_rw.savePreds(df_train_pred, dir_path, fold_filename, layers_config,
                      alpha, "train_lasso")
예제 #2
0
def run(data_filenames, fold_filename, alpha, nDepth, ge_range_all):
    fold_filepath = '{!s}/folds/{!s}'.format(dir_path, fold_filename)
    df_train_input, df_train_output, df_test_input, df_test_output = data_rw.loadData(data_filenames, fold_filepath)

    nM = df_train_input.shape[0]

    model = getModel(nDInput = df_train_input.shape[1],
                     nDOutput = df_train_output.shape[1],
                     alpha = alpha,
                     nDepth = nDepth)
    if ge_range_all:
        model = keras_util.apply_range(model, ge_range_all, df_train_output.columns)
    
    train_input_ext = np.repeat(df_train_input.as_matrix()[:, np.newaxis, :], 
                                nDepth, axis=1)
    keras_util.fitModel(model, train_input_ext, df_train_output.as_matrix(), [nDepth], alpha, "biRnn", dir_path, fold_filename)

    test_input_ext = np.repeat(df_test_input.as_matrix()[:, np.newaxis, :], 
                               nDepth, axis=1)
    # Save test predictions:
    test_pred = model.predict(test_input_ext)
    df_test_pred = pd.DataFrame(data = test_pred,
                                columns=df_test_output.columns,
                                index=None)
    data_rw.savePreds(df_test_pred, dir_path, fold_filename, [nDepth], alpha, "biRnn")
    
    # Save training predictions:
    train_pred = model.predict(train_input_ext)
    df_train_pred = pd.DataFrame(data = train_pred,
                                 columns=df_train_output.columns,
                                 index=None)
    data_rw.savePreds(df_train_pred, dir_path, fold_filename, [nDepth], alpha, "train_biRnn")