예제 #1
0
def main(which, debug=True):
    with(open('settings.yml')) as f:
        settings = yaml.load(f)

    clf = pickle.load(open('classifier.pickle'))
    
    img = capture_image()
    
    prediction, binarized_img, chars = predict(clf, img=img,
         boundaries=settings['crop'][which])
     
    
    if debug:
        pp.gray()        
        pp.subplot(2,1,1)
        pp.title('Prediction: %s' % prediction, fontsize='xx-large')
        pp.imshow(binarized_img)
        for i in range(6):
            pp.subplot(2,6,7+i)
            pp.imshow(chars[i])
        pp.show()

    print prediction
예제 #2
0
파일: server.py 프로젝트: rmcgibbo/autogert
    settings = yaml.load(f)


class ValidationError(Exception):
    pass


def validate_user(username, password):
    if settings["users"][username] != password:
        raise ValidationError()


@app.route("/<int:token_id>", methods=["POST"])
def index(token_id):
    try:
        username = request.values["username"]
        password = request.values["password"]
        validate_user(username, password)
        boundaries = settings["crop"][token_id]
    except KeyError, ValidationError:
        abort(401)

    img = capture_image()
    prediction, binarized_img, chars = predict(clf, img=img, boundaries=boundaries)

    return jsonify({"prediction": prediction})


if __name__ == "__main__":
    app.run(debug=True)
예제 #3
0
파일: train.py 프로젝트: rmcgibbo/autogert
def interactive_benchmark(clf, raw_images_glob, save_to):
    with(open('settings.yml')) as f:
        settings = yaml.load(f)

    # interactive plotting
    pp.ion()
    pp.figure()
    pp.gray()
    
    if not os.path.exists(save_to):
        print "CREATING DIRECTORY", save_to
        os.makedirs(save_to)
    
    instructions = '[Enter] to accept, [q] to quit, or key the correct answer'
    print instructions
    
    lines = []
    
    raw_images_fn = glob.glob(raw_images_glob)
    training_images = set(yaml.load(open('training/training_set.yml')).keys())
    
    for fn in raw_images_fn:
        if os.path.basename(fn) in training_images:
            print 'Already trained on %s. Skipping' % fn
            continue
        
        prediction, binarized_img, chars = predict(clf, img=fn,
            boundaries=settings['crop'][0])
        
        # plot the binarize_img across the top panel
        pp.clf()
        pp.subplot(2,1,1)
        pp.imshow(binarized_img)
        
        # plot the 6 chars (separated) across the bottom panel
        for i in range(6):
            pp.subplot(2,6,7+i)
            pp.imshow(chars[i])
            
        title = ' '.join(prediction[:3]) + '  ' + ' '.join(prediction[3:])
        pp.suptitle(title, fontsize='xx-large')
        pp.draw()
        
        ask_again = True
        while ask_again:
            response = raw_input('[Enter/q/key]: ')
            ask_again = False  # default
            
            if response == '':
                line = '%s: "%s"' % (os.path.basename(fn), prediction)
                print line
                lines.append(line)
                io.imsave(os.path.join(save_to, os.path.basename(fn)),
                    1.0*binarized_img)

            elif re.match('\d{6}', response):
                line = '%s: "%s"' % (os.path.basename(fn), response)
                print 'CORRECTED', line
                lines.append(line)
                io.imsave(os.path.join(save_to, os.path.basename(fn)),
                    1.0*binarized_img)

            elif response == 'q':
                print 'Quitting...\n'
                print ('Instructions: Move the files from %s into the training '
                       'directory, and add the lines below to the file'
                       'training_set.yml:\n' % save_to)
                print os.linesep.join(lines)
                return

            else:
                print instructions
                ask_again = True