예제 #1
0
    def run(self):
        img = IMG()

        fout = open('./data/evaluate_prodigal.txt', 'w', 1)

        # get list of all marker genes
        markerset = MarkerSet()
        pfamMarkers, tigrMarkers = markerset.getCalculatedMarkerGenes()

        print('PFAM marker genes: ' + str(len(tigrMarkers)))
        print('TIGR marker genes: ' + str(len(pfamMarkers)))
        print('')

        # run HMMs on each of the finished genomes
        genomeIds = img.genomeIds('Finished')
        for genomeId in genomeIds:
            print(genomeId + ':')
            fout.write(genomeId + ':\n')

            self.runProdigal(genomeId)
            self.runGeneMark(genomeId)

            self.runPFAM(genomeId)
            self.runTIGRFAM(genomeId)

            self.compareResults(genomeId, pfamMarkers, tigrMarkers, fout)

        fout.close()
예제 #2
0
파일: getHMMs.py 프로젝트: zjyzjjzmt/CheckM
    def run(self, minGenomes, minMarkerSets):
        img = IMG()
        pfam = PFAM()

        # get list of all marker genes
        markerset = MarkerSet()
        pfamIds, tigrIds = markerset.getCalculatedMarkerGenes()

        print 'TIGR marker genes: ' + str(len(tigrIds))
        print 'PFAM marker genes: ' + str(len(pfamIds))

        # get all PFAM HMMs that are in the same clan
        # as any of the marker genes
        pfamIdToClanId = pfam.pfamIdToClanId()
        clans = set()
        for pfamId in pfamIds:
            if pfamId.replace('PF', 'pfam') in pfamIdToClanId:
                clans.add(pfamIdToClanId[pfamId])

        for pfamId, clanId in pfamIdToClanId.iteritems():
            if clanId in clans:
                pfamIds.add(pfamId)

        print '  PFAM HMMs require to cover marker gene clans: ' + str(
            len(pfamIds))

        # get name of each PFAM HMM
        fout = open('./hmm/pfam.keyfile.txt', 'w')
        pfamNames = []
        for line in open(img.pfamHMMs):
            if 'NAME' in line:
                name = line[line.find(' '):].strip()
            elif 'ACC' in line:
                acc = line[line.find(' '):line.rfind('.')].strip()
                if acc.replace('PF', 'pfam') in pfamIds:
                    pfamNames.append(name)
                    fout.write(name + '\n')
        fout.close()

        print 'PFAM names: ' + str(len(pfamNames))

        # extract each PFAM HMM
        os.system('hmmfetch -f ' + img.pfamHMMs +
                  ' ./hmm/pfam.keyfile.txt > ./hmm/pfam_markers.hmm')

        # get name of each PFAM HMM
        fout = open('./hmm/tigr.keyfile.txt', 'w')
        for tigrId in tigrIds:
            fout.write(tigrId + '\n')
        fout.close()

        # extract each PFAM HMM
        os.system('hmmfetch -f ' + img.tigrHMMs +
                  ' ./hmm/tigr.keyfile.txt > ./hmm/tigr_markers.hmm')
예제 #3
0
    def run(self, ubiquityThreshold, singleCopyThreshold, rank):
        img = IMG()
        markerset = MarkerSet()

        print('Reading metadata.')
        metadata = img.genomeMetadata()
        print('  Genomes with metadata: ' + str(len(metadata)))

        # calculate marker set for each lineage at the specified rank
        sortedLineages = img.lineagesSorted(metadata, rank)
        markerGeneLists = {}
        for lineage in sortedLineages:
            taxonomy = lineage.split(';')
            if len(taxonomy) != rank + 1:
                continue

        genomeIds = img.genomeIdsByTaxonomy(lineage, metadata, 'Final')
        countTable = img.countTable(genomeIds)

        if len(genomeIds) < 3:
            continue

        print('Lineage ' + lineage + ' contains ' + str(len(genomeIds)) +
              ' genomes.')

        markerGenes = markerset.markerGenes(
            genomeIds, countTable, ubiquityThreshold * len(genomeIds),
            singleCopyThreshold * len(genomeIds))

        print('  Marker genes: ' + str(len(markerGenes)))
        print('')

        markerGeneLists[lineage] = markerGenes

        # calculate union of marker gene list for higher taxonomic groups
        for r in range(rank - 1, -1, -1):
            print('Processing rank ' + str(r))
            rankMarkerGeneLists = {}
            for lineage, markerGenes in markerGeneLists.iteritems():
                taxonomy = lineage.split(';')
                if len(taxonomy) != r + 2:
                    continue

                curLineage = '; '.join(taxonomy[0:r + 1])
                if curLineage not in rankMarkerGeneLists:
                    rankMarkerGeneLists[curLineage] = markerGenes
                else:
                    curMarkerGenes = rankMarkerGeneLists[curLineage]
                    curMarkerGenes = curMarkerGenes.intersection(markerGenes)
                    rankMarkerGeneLists[curLineage] = curMarkerGenes

            # combine marker gene list dictionaries
            markerGeneLists.update(rankMarkerGeneLists)
예제 #4
0
    def run(self, ubiquityThreshold, singleCopyThreshold, minGenomes,
            minMarkers, mostSpecificRank, distThreshold, genomeThreshold):
        img = IMG()
        markerset = MarkerSet()

        lineages = img.lineagesSorted(mostSpecificRank)

        fout = open('./data/colocated.tsv', 'w', 1)
        fout.write(
            'Lineage\t# genomes\t# markers\t# co-located sets\tCo-located markers\n'
        )

        lineageCount = 0
        for lineage in lineages:
            lineageCount += 1

            genomeIds = img.genomeIdsByTaxonomy(lineage, 'Final')
            if len(genomeIds) < minGenomes:
                continue

            countTable = img.countTable(genomeIds)
            markerGenes = markerset.markerGenes(
                genomeIds, countTable, ubiquityThreshold * len(genomeIds),
                singleCopyThreshold * len(genomeIds))

            geneDistTable = img.geneDistTable(genomeIds,
                                              markerGenes,
                                              spacingBetweenContigs=1e6)
            colocatedGenes = markerset.colocatedGenes(geneDistTable,
                                                      distThreshold,
                                                      genomeThreshold)
            colocatedSets = markerset.colocatedSets(colocatedGenes,
                                                    markerGenes)
            if len(colocatedSets) < minMarkers:
                continue

            print '\nLineage ' + lineage + ' contains ' + str(len(
                genomeIds)) + ' genomes (' + str(lineageCount) + ' of ' + str(
                    len(lineages)) + ').'
            print '  Marker genes: ' + str(len(markerGenes))
            print '  Co-located gene sets: ' + str(len(colocatedSets))

            fout.write(lineage + '\t' + str(len(genomeIds)) + '\t' +
                       str(len(markerGenes)) + '\t' + str(len(colocatedSets)))
            for cs in colocatedSets:
                fout.write('\t' + ', '.join(cs))
            fout.write('\n')

        fout.close()
예제 #5
0
 def __init__(self):
     self.img = IMG()
     self.markerset = MarkerSet()
예제 #6
0
    def run(self, ubiquityThreshold, singleCopyThreshold, minGenomes,
            mostSpecificRank, minMarkers, completenessThreshold,
            contaminationThreshold):
        print 'Ubiquity threshold: ' + str(ubiquityThreshold)
        print 'Single-copy threshold: ' + str(singleCopyThreshold)
        print 'Min. genomes: ' + str(minGenomes)
        print 'Most specific taxonomic rank: ' + str(mostSpecificRank)
        print 'Min markers: ' + str(minMarkers)
        print 'Completeness threshold: ' + str(completenessThreshold)
        print 'Contamination threshold: ' + str(contaminationThreshold)

        img = IMG()
        markerset = MarkerSet()

        lineages = img.lineagesByCriteria(minGenomes, mostSpecificRank)

        degenerateGenomes = {}
        for lineage in lineages:
            genomeIds = img.genomeIdsByTaxonomy(lineage, 'Final')

            print ''
            print 'Lineage ' + lineage + ' contains ' + str(
                len(genomeIds)) + ' genomes.'

            # get table of PFAMs and do some initial filtering to remove PFAMs that are
            # clearly not going to pass the ubiquity and single-copy thresholds
            countTable = img.countTable(genomeIds)
            countTable = img.filterTable(genomeIds, countTable,
                                         ubiquityThreshold * 0.9,
                                         singleCopyThreshold * 0.9)

            markerGenes = markerset.markerGenes(
                genomeIds, countTable, ubiquityThreshold * len(genomeIds),
                singleCopyThreshold * len(genomeIds))
            if len(markerGenes) < minMarkers:
                continue

            geneDistTable = img.geneDistTable(genomeIds,
                                              markerGenes,
                                              spacingBetweenContigs=1e6)
            colocatedGenes = markerset.colocatedGenes(geneDistTable)
            colocatedSets = markerset.colocatedSets(colocatedGenes,
                                                    markerGenes)

            for genomeId in genomeIds:
                completeness, contamination = markerset.genomeCheck(
                    colocatedSets, genomeId, countTable)

                if completeness < completenessThreshold or contamination > contaminationThreshold:
                    degenerateGenomes[genomeId] = degenerateGenomes.get(
                        genomeId, []) + [[
                            lineage.split(';')[-1].strip(),
                            len(genomeIds),
                            len(colocatedSets), completeness, contamination
                        ]]

        # write out degenerate genomes
        metadata = img.genomeMetadata('Final')

        fout = open('./data/degenerate_genomes.tsv', 'w')
        fout.write(
            'Genome Id\tTaxonomy\tGenome Size (Gbps)\tScaffolds\tBiotic Relationships\tStatus\tLineage\t# genomes\tMarker set size\tCompleteness\tContamination\n'
        )
        for genomeId, data in degenerateGenomes.iteritems():
            fout.write(genomeId + '\t' +
                       '; '.join(metadata[genomeId]['taxonomy']) + '\t%.2f' %
                       (float(metadata[genomeId]['genome size']) / 1e6) +
                       '\t' + str(metadata[genomeId]['scaffold count']))
            fout.write('\t' + metadata[genomeId]['biotic relationships'] +
                       '\t' + metadata[genomeId]['status'])

            for d in data:
                fout.write('\t' + d[0] + '\t' + str(d[1]) + '\t' + str(d[2]) +
                           '\t%.3f\t%.3f' % (d[3], d[4]))
            fout.write('\n')

        fout.close()
예제 #7
0
    def run(self):
        img = IMG()
        markerset = MarkerSet()

        print('Reading metadata.')
        metadata = img.genomeMetadata('Final')

        print('Getting marker genes.')
        pfamMarkers, tigrMarkers = markerset.getLineageMarkerGenes('Archaea')
        markerGenes = pfamMarkers.union(tigrMarkers)
        print('  Marker genes: ' + str(len(markerGenes)))

        print('Getting genomes of interest.')
        genomeIds = img.genomeIdsByTaxonomy('Archaea', 'Final')
        print('  Genomes: ' + str(len(genomeIds)))

        print('Getting position of each marker gene.')
        geneDistTable = img.geneDistTable(genomeIds,
                                          markerGenes,
                                          spacingBetweenContigs=1e6)

        spearmanValues = []
        pearsonValues = []
        genomeIds = list(genomeIds)
        for i in range(0, len(genomeIds)):
            print(str(i + 1) + ' of ' + str(len(genomeIds)))

            geneOrderI = []
            maskI = []
            for markerGenesId in markerGenes:
                if markerGenesId in geneDistTable[genomeIds[i]]:
                    geneOrderI.append(
                        float(geneDistTable[genomeIds[i]][markerGenesId][0][0])
                        / metadata[genomeIds[i]]['genome size'])
                    maskI.append(0)
                else:
                    geneOrderI.append(-1)
                    maskI.append(1)

            for j in range(i + 1, len(genomeIds)):
                geneOrderJ = []
                maskJ = []
                for markerGenesId in markerGenes:
                    if markerGenesId in geneDistTable[genomeIds[j]]:
                        geneOrderJ.append(
                            float(geneDistTable[genomeIds[j]][markerGenesId][0]
                                  [0]) / metadata[genomeIds[j]]['genome size'])
                        maskJ.append(0)
                    else:
                        geneOrderJ.append(-1)
                        maskJ.append(1)

                # test all translations
                bestSpearman = 0
                bestPearson = 0
                for _ in range(0, len(markerGenes)):
                    maskedI = []
                    maskedJ = []
                    for k in range(0, len(maskI)):
                        if maskI[k] == 0 and maskJ[k] == 0:
                            maskedI.append(geneOrderI[k])
                            maskedJ.append(geneOrderJ[k])
                    r, _ = spearmanr(maskedI, maskedJ)
                    if abs(r) > bestSpearman:
                        bestSpearman = abs(r)

                    r, _ = pearsonr(maskedI, maskedJ)
                    if abs(r) > bestPearson:
                        bestPearson = abs(r)

                    geneOrderJ = geneOrderJ[1:] + [geneOrderJ[0]]
                    maskJ = maskJ[1:] + [maskJ[0]]

                spearmanValues.append(bestSpearman)
                pearsonValues.append(bestPearson)

        print('Spearman: %.2f +/- %.2f: ' %
              (mean(spearmanValues), std(spearmanValues)))
        print('Pearson: %.2f +/- %.2f: ' %
              (mean(pearsonValues), std(pearsonValues)))
예제 #8
0
    def run(self, taxonomyStr, ubiquityThreshold, singleCopyThreshold, numBins,
            numRndGenomes):
        img = IMG()
        markerSet = MarkerSet()

        metadata = img.genomeMetadata()
        lineageGenomeIds = img.genomeIdsByTaxonomy(taxonomyStr, metadata)

        # build marker set from finished prokaryotic genomes
        genomeIds = []
        for genomeId in lineageGenomeIds:
            if metadata[genomeId]['status'] == 'Finished' and (
                    metadata[genomeId]['taxonomy'][0] == 'Bacteria'
                    or metadata[genomeId]['taxonomy'][0] == 'Archaea'):
                genomeIds.append(genomeId)
        genomeIds = set(genomeIds) - img.genomesWithMissingData(genomeIds)

        print 'Lineage ' + taxonomyStr + ' contains ' + str(
            len(genomeIds)) + ' genomes.'

        # get marker set
        countTable = img.countTable(genomeIds)
        countTable = img.filterTable(genomeIds, countTable,
                                     0.9 * ubiquityThreshold,
                                     0.9 * singleCopyThreshold)
        markerGenes = markerSet.markerGenes(
            genomeIds, countTable, ubiquityThreshold * len(genomeIds),
            singleCopyThreshold * len(genomeIds))
        tigrToRemove = img.identifyRedundantTIGRFAMs(markerGenes)
        markerGenes = markerGenes - tigrToRemove
        geneDistTable = img.geneDistTable(genomeIds,
                                          markerGenes,
                                          spacingBetweenContigs=1e6)

        print 'Number of marker genes: ' + str(len(markerGenes))

        # randomly set genomes to plot
        if numRndGenomes != -1:
            genomeIds = random.sample(list(genomeIds), numRndGenomes)
        genomeIds = set(genomeIds)

        # plot distribution of marker genes
        filename = 'geneDistribution.' + taxonomyStr.replace(
            ';', '_') + '.' + str(ubiquityThreshold) + '-' + str(
                singleCopyThreshold) + '.tsv'
        fout = open(filename, 'w')
        fout.write(
            'Genome ID\tLineage\tNumber of Genes\tUniformity\tDistribution\n')
        matrix = []
        rowLabels = []
        for genomeId in genomeIds:
            binSize = float(metadata[genomeId]['genome size']) / numBins

            binCounts = [0] * numBins
            pts = []
            for _, data in geneDistTable[genomeId].iteritems():
                for genePos in data:
                    binNum = int(genePos[1] / binSize)
                    binCounts[binNum] += 1
                    pts.append(genePos[1])
            matrix.append(binCounts)

            u = markerSet.uniformity(metadata[genomeId]['genome size'], pts)

            fout.write(genomeId + '\t' +
                       '; '.join(metadata[genomeId]['taxonomy']) + '\t' +
                       str(len(geneDistTable[genomeId])) + '\t%.3f' % u)
            for b in xrange(0, numBins):
                fout.write('\t' + str(binCounts[b]))
            fout.write('\n')

            rowLabels.append('%.2f' % u + ', ' + str(genomeId) + ' - ' +
                             '; '.join(metadata[genomeId]['taxonomy'][0:5]))

        fout.close()

        # plot data
        heatmap = Heatmap()
        plotFilename = 'geneDistribution.' + taxonomyStr.replace(
            ';', '_') + '.' + str(ubiquityThreshold) + '-' + str(
                singleCopyThreshold) + '.png'
        heatmap.plot(plotFilename, matrix, rowLabels, 0.6)
예제 #9
0
    def run(self, ubiquityThreshold, singleCopyThreshold, trustedCompleteness,
            trustedContamination, genomeCompleteness, genomeContamination):
        img = IMG()
        markerset = MarkerSet()

        metadata = img.genomeMetadata()

        trustedOut = open('./data/trusted_genomes.tsv', 'w')
        trustedOut.write(
            'Genome Id\tLineage\tGenome size (Mbps)\tScaffold count\tBiotic Relationship\tStatus\tCompleteness\tContamination\n'
        )

        filteredOut = open('./data/filtered_genomes.tsv', 'w')
        filteredOut.write(
            'Genome Id\tLineage\tGenome size (Mbps)\tScaffold count\tBiotic Relationship\tStatus\tCompleteness\tContamination\n'
        )

        allGenomeIds = set()
        allTrustedGenomeIds = set()
        for lineage in ['Archaea', 'Bacteria']:
            # get all genomes in lineage and build gene count table
            print '\nBuilding gene count table.'
            allLineageGenomeIds = img.genomeIdsByTaxonomy(
                lineage, metadata, 'All')
            countTable = img.countTable(allLineageGenomeIds)
            countTable = img.filterTable(allLineageGenomeIds, countTable,
                                         0.9 * ubiquityThreshold,
                                         0.9 * singleCopyThreshold)

            # get all genomes from specific lineage
            allGenomeIds = allGenomeIds.union(allLineageGenomeIds)

            print 'Lineage ' + lineage + ' contains ' + str(
                len(allLineageGenomeIds)) + ' genomes.'

            # tabulate genomes from each phylum
            allPhylumCounts = {}
            for genomeId in allLineageGenomeIds:
                taxon = metadata[genomeId]['taxonomy'][1]
                allPhylumCounts[taxon] = allPhylumCounts.get(taxon, 0) + 1

            # identify marker set for genomes
            markerGenes = markerset.markerGenes(
                allLineageGenomeIds, countTable,
                ubiquityThreshold * len(allLineageGenomeIds),
                singleCopyThreshold * len(allLineageGenomeIds))
            print '  Marker genes: ' + str(len(markerGenes))

            geneDistTable = img.geneDistTable(allLineageGenomeIds,
                                              markerGenes,
                                              spacingBetweenContigs=1e6)
            colocatedGenes = markerset.colocatedGenes(geneDistTable, metadata)
            colocatedSets = markerset.colocatedSets(colocatedGenes,
                                                    markerGenes)
            print '  Marker set size: ' + str(len(colocatedSets))

            # identifying trusted genomes (highly complete, low contamination genomes)
            trustedGenomeIds = set()
            for genomeId in allLineageGenomeIds:
                completeness, contamination = markerset.genomeCheck(
                    colocatedSets, genomeId, countTable)

                if completeness >= trustedCompleteness and contamination <= trustedContamination:
                    trustedGenomeIds.add(genomeId)
                    allTrustedGenomeIds.add(genomeId)

                    trustedOut.write(genomeId + '\t' +
                                     '; '.join(metadata[genomeId]['taxonomy']))
                    trustedOut.write(
                        '\t%.2f' %
                        (float(metadata[genomeId]['genome size']) / 1e6))
                    trustedOut.write('\t' +
                                     str(metadata[genomeId]['scaffold count']))
                    trustedOut.write(
                        '\t' + metadata[genomeId]['biotic relationships'])
                    trustedOut.write('\t' + metadata[genomeId]['status'])
                    trustedOut.write('\t%.3f\t%.3f' %
                                     (completeness, contamination) + '\n')
                else:
                    filteredOut.write(
                        genomeId + '\t' +
                        '; '.join(metadata[genomeId]['taxonomy']))
                    filteredOut.write(
                        '\t%.2f' %
                        (float(metadata[genomeId]['genome size']) / 1e6))
                    filteredOut.write(
                        '\t' + str(metadata[genomeId]['scaffold count']))
                    filteredOut.write(
                        '\t' + metadata[genomeId]['biotic relationships'])
                    filteredOut.write('\t' + metadata[genomeId]['status'])
                    filteredOut.write('\t%.3f\t%.3f' %
                                      (completeness, contamination) + '\n')

            print '  Trusted genomes: ' + str(len(trustedGenomeIds))

            # determine status of trusted genomes
            statusBreakdown = {}
            for genomeId in trustedGenomeIds:
                statusBreakdown[metadata[genomeId]
                                ['status']] = statusBreakdown.get(
                                    metadata[genomeId]['status'], 0) + 1

            print '  Trusted genome status breakdown: '
            for status, count in statusBreakdown.iteritems():
                print '    ' + status + ': ' + str(count)

            # determine status of retained genomes
            proposalNameBreakdown = {}
            for genomeId in trustedGenomeIds:
                proposalNameBreakdown[metadata[genomeId][
                    'proposal name']] = proposalNameBreakdown.get(
                        metadata[genomeId]['proposal name'], 0) + 1

            print '  Retained genome proposal name breakdown: '
            for pn, count in proposalNameBreakdown.iteritems():
                if 'KMG' in pn or 'GEBA' in pn or 'HMP' in pn:
                    print '    ' + pn + ': ' + str(count)

            print '  Filtered genomes by phylum:'
            trustedPhylumCounts = {}
            for genomeId in trustedGenomeIds:
                taxon = metadata[genomeId]['taxonomy'][1]
                trustedPhylumCounts[taxon] = trustedPhylumCounts.get(taxon,
                                                                     0) + 1

            for phylum, count in allPhylumCounts.iteritems():
                print phylum + ': %d of %d' % (trustedPhylumCounts.get(
                    phylum, 0), count)

        trustedOut.close()
        filteredOut.close()

        # write out lineage statistics for genome distribution
        allStats = {}
        trustedStats = {}

        for r in xrange(0, 6):  # Domain to Genus
            for genomeId, data in metadata.iteritems():
                taxaStr = '; '.join(data['taxonomy'][0:r + 1])
                allStats[taxaStr] = allStats.get(taxaStr, 0) + 1
                if genomeId in allTrustedGenomeIds:
                    trustedStats[taxaStr] = trustedStats.get(taxaStr, 0) + 1

        sortedLineages = img.lineagesSorted()

        fout = open('./data/lineage_stats.tsv', 'w')
        fout.write('Lineage\tGenomes with metadata\tTrusted genomes\n')
        for lineage in sortedLineages:
            fout.write(lineage + '\t' + str(allStats.get(lineage, 0)) + '\t' +
                       str(trustedStats.get(lineage, 0)) + '\n')
        fout.close()