def set_model(): net = model_factory[cfg.model_type](cfg.n_classes) if not args.finetune_from is None: net.load_state_dict(torch.load(args.finetune_from, map_location='cpu')) if cfg.use_sync_bn: net = nn.SyncBatchNorm.convert_sync_batchnorm(net) net.cuda() net.train() criteria_pre = OhemCELoss(0.7) criteria_aux = [OhemCELoss(0.7) for _ in range(cfg.num_aux_heads)] return net, criteria_pre, criteria_aux
def set_model(): net = model_factory[cfg.model_type](19) if not args.finetune_from is None: checkpoint = torch.load(args.finetune_from, map_location='cpu') net.load_state_dict(checkpoint['state_dict']) net.to(device) net.train() criteria_pre = OhemCELoss(0.7) criteria_aux = [OhemCELoss(0.7) for _ in range(cfg.num_aux_heads)] return net, criteria_pre, criteria_aux
def set_model(): # net = model_factory[cfg.model_type](n_classes=19) net = model_factory[cfg.model_type](n_classes=cfg.n_classes) if not args.finetune_from is None: net.load_state_dict(torch.load(args.finetune_from, map_location='cpu')) if cfg.use_sync_bn: net = set_syncbn(net) net.to(device) net.train() #CHANGED: undo to use normal CrossEntropyLoss #FIXME: learn how to use OhemCrossEntropyLoss (Online Hard Example Mining) criteria_pre = OhemCELoss(0.7, cfg.anns_ignore) criteria_aux = [ OhemCELoss(0.7, cfg.anns_ignore) for _ in range(cfg.num_aux_heads) ] # criteria_pre = nn.CrossEntropyLoss(ignore_index=cfg.anns_ignore) # criteria_aux = [nn.CrossEntropyLoss(ignore_index=cfg.anns_ignore) for _ in range(cfg.num_aux_heads)] return net, criteria_pre, criteria_aux
def set_model(): net = model_factory[cfg.model_type](cfg.n_classes) if cfg.model_type == 'hardnet': net.apply(weights_init) pretrained_path = './hardnet_weights/hardnet_petite_base.pth' weights = torch.load(pretrained_path) net.base.load_state_dict(weights) if not args.finetune_from is None: net.load_state_dict(torch.load(args.finetune_from, map_location='cpu')) if cfg.use_sync_bn: net = set_syncbn(net) net.cuda() net.train() criteria_pre = OhemCELoss(0.7) criteria_aux = [OhemCELoss(0.7) for _ in range(cfg.num_aux_heads)] return net, criteria_pre, criteria_aux