def start(args): ctx = Context(s3_path=args.context, cache_dir=args.cache_dir, workload_id=args.workload_id) package.install_packages(ctx.python_packages, ctx.bucket) api = ctx.apis_id_map[args.api] model = ctx.models[api["model_name"]] tf_lib.set_logging_verbosity(ctx.environment["log_level"]["tensorflow"]) local_cache["ctx"] = ctx local_cache["api"] = api local_cache["model"] = model if not os.path.isdir(args.model_dir): aws.download_and_extract_zip(model["key"], args.model_dir, ctx.bucket) for column_name in model["feature_columns"] + [model["target_column"]]: if ctx.is_transformed_column(column_name): trans_impl, _ = ctx.get_transformer_impl(column_name) local_cache["trans_impls"][column_name] = trans_impl transformed_column = ctx.transformed_columns[column_name] input_args_schema = transformed_column["inputs"]["args"] # cache aggregates and constants in memory if input_args_schema is not None: local_cache["transform_args_cache"][ column_name] = ctx.populate_args(input_args_schema) channel = implementations.insecure_channel("localhost", args.tf_serve_port) local_cache[ "stub"] = prediction_service_pb2.beta_create_PredictionService_stub( channel) local_cache["required_inputs"] = tf_lib.get_base_input_columns( model["name"], ctx) # wait a bit for tf serving to start before querying metadata limit = 600 for i in range(limit): try: local_cache["metadata"] = run_get_model_metadata() break except Exception as e: if i == limit - 1: logger.exception( "An error occurred, see `cx logs api {}` for more details." .format(api["name"])) sys.exit(1) time.sleep(1) logger.info("Serving model: {}".format(model["name"])) serve(app, listen="*:{}".format(args.port))
def train(args): ctx = Context(s3_path=args.context, cache_dir=args.cache_dir, workload_id=args.workload_id) package.install_packages(ctx.python_packages, ctx.bucket) model = ctx.models_id_map[args.model] logger.info("Training") with util.Tempdir(ctx.cache_dir) as temp_dir: model_dir = os.path.join(temp_dir, "model_dir") ctx.upload_resource_status_start(model) try: model_impl = ctx.get_model_impl(model["name"]) train_util.train(model["name"], model_impl, ctx, model_dir) ctx.upload_resource_status_success(model) logger.info("Caching") logger.info("Caching model " + model["name"]) model_export_dir = os.path.join(model_dir, "export", "estimator") model_zip_path = os.path.join(temp_dir, "model.zip") util.zip_dir(model_export_dir, model_zip_path) aws.upload_file_to_s3(local_path=model_zip_path, key=model["key"], bucket=ctx.bucket) util.log_job_finished(ctx.workload_id) except CortexException as e: ctx.upload_resource_status_failed(model) e.wrap("error") logger.error(str(e)) logger.exception( "An error occurred, see `cx logs model {}` for more details.". format(model["name"])) sys.exit(1) except Exception as e: ctx.upload_resource_status_failed(model) logger.exception( "An error occurred, see `cx logs model {}` for more details.". format(model["name"])) sys.exit(1)
def start(args): ctx = Context(s3_path=args.context, cache_dir=args.cache_dir, workload_id=args.workload_id) api = ctx.apis_id_map[args.api] local_cache["api"] = api local_cache["ctx"] = ctx if api.get("request_handler_impl_key") is not None: package.install_packages(ctx.python_packages, ctx.storage) local_cache["request_handler"] = ctx.get_request_handler_impl( api["name"]) model_cache_path = os.path.join(args.model_dir, args.api) if not os.path.exists(model_cache_path): ctx.storage.download_file_external(api["model"], model_cache_path) sess = rt.InferenceSession(model_cache_path) local_cache["sess"] = sess local_cache["input_metadata"] = sess.get_inputs() local_cache["output_metadata"] = sess.get_outputs() logger.info("Serving model: {}".format( util.remove_resource_ref(api["model"]))) serve(app, listen="*:{}".format(args.port))
def start(args): ctx = Context(s3_path=args.context, cache_dir=args.cache_dir, workload_id=args.workload_id) api = ctx.apis_id_map[args.api] local_cache["api"] = api local_cache["ctx"] = ctx if api.get("request_handler_impl_key") is not None: local_cache["request_handler"] = ctx.get_request_handler_impl( api["name"]) if not util.is_resource_ref(api["model"]): if api.get("request_handler") is not None: package.install_packages(ctx.python_packages, ctx.storage) if not os.path.isdir(args.model_dir): ctx.storage.download_and_unzip_external(api["model"], args.model_dir) else: package.install_packages(ctx.python_packages, ctx.storage) model_name = util.get_resource_ref(api["model"]) model = ctx.models[model_name] estimator = ctx.estimators[model["estimator"]] local_cache["model"] = model local_cache["estimator"] = estimator local_cache["target_col"] = ctx.columns[util.get_resource_ref( model["target_column"])] local_cache["target_col_type"] = ctx.get_inferred_column_type( util.get_resource_ref(model["target_column"])) log_level = "DEBUG" if ctx.environment is not None and ctx.environment.get( "log_level") is not None: log_level = ctx.environment["log_level"].get("tensorflow", "DEBUG") tf_lib.set_logging_verbosity(log_level) if not os.path.isdir(args.model_dir): ctx.storage.download_and_unzip(model["key"], args.model_dir) for column_name in ctx.extract_column_names( [model["input"], model["target_column"]]): if ctx.is_transformed_column(column_name): trans_impl, _ = ctx.get_transformer_impl(column_name) local_cache["trans_impls"][column_name] = trans_impl transformed_column = ctx.transformed_columns[column_name] # cache aggregate values for resource_name in util.extract_resource_refs( transformed_column["input"]): if resource_name in ctx.aggregates: ctx.get_obj(ctx.aggregates[resource_name]["key"]) local_cache["required_inputs"] = tf_lib.get_base_input_columns( model["name"], ctx) if util.is_dict(model["input"]) and model["input"].get( "target_vocab") is not None: local_cache["target_vocab_populated"] = ctx.populate_values( model["input"]["target_vocab"], None, False) try: validate_model_dir(args.model_dir) except Exception as e: logger.exception(e) sys.exit(1) channel = grpc.insecure_channel("localhost:" + str(args.tf_serve_port)) local_cache["stub"] = prediction_service_pb2_grpc.PredictionServiceStub( channel) # wait a bit for tf serving to start before querying metadata limit = 300 for i in range(limit): try: local_cache["metadata"] = run_get_model_metadata() break except Exception as e: if i == limit - 1: logger.exception( "An error occurred, see `cortex logs -v api {}` for more details." .format(api["name"])) sys.exit(1) time.sleep(1) logger.info("Serving model: {}".format( util.remove_resource_ref(api["model"]))) serve(app, listen="*:{}".format(args.port))