parser.add_argument("--dataset", type=str, choices=["mujoco", "omnipush"], default="mujoco") parser.add_argument("--hidden_units", type=int, default=64) args = parser.parse_args() # Some constants E2E_EPOCHS = 10 # Configure experiment experiment_name = args.experiment_name # Create models & training buddy dynamics_model = panda_models.PandaDynamicsModel(units=32) measurement_model = panda_models.PandaMeasurementModel(units=args.hidden_units) pf_model = panda_models.PandaParticleFilterNetwork(dynamics_model, measurement_model) buddy = fannypack.utils.Buddy(experiment_name + "_unfrozen", pf_model, optimizer_names=[ "e2e_fusion", "e2e_image", "e2e_force", "dynamics_image", "dynamics_force", "dynamics_recurrent_image", "dynamics_recurrent_force", "measurement_image", "measurement_force",
# Configure experiment experiment_name = args.experiment_name dataset_args = { 'use_proprioception': True, 'use_haptics': True, 'use_vision': True, 'vision_interval': 2, 'image_blackout_ratio': args.blackout, 'sequential_image_rate': args.sequential_image, 'start_timestep': args.start_timestep, } # Create models & training buddy pf_image_model = panda_models.PandaParticleFilterNetwork( panda_models.PandaDynamicsModel(), panda_models.PandaMeasurementModel(units=args.hidden_units, missing_modalities=['gripper_sensors'])) pf_force_model = panda_models.PandaParticleFilterNetwork( panda_models.PandaDynamicsModel(), panda_models.PandaMeasurementModel(units=args.hidden_units, missing_modalities=['image']), ) weight_model = fusion.CrossModalWeights(state_dim=1, use_softmax=True, use_log_softmax=True) pf_fusion_model = fusion_pf.ParticleFusionModel(pf_image_model, pf_force_model, weight_model) buddy = fannypack.utils.Buddy(experiment_name, pf_fusion_model, optimizer_names=[ "e2e_fusion",
type=str, choices=["mujoco", "omnipush"], default="mujoco") parser.add_argument("--hidden_units", type=int, default=64) args = parser.parse_args() # Some constants E2E_EPOCHS = 10 # Configure experiment experiment_name = args.experiment_name # Create models & training buddy pf_image_model = panda_models.PandaParticleFilterNetwork( panda_models.PandaDynamicsModel(), panda_models.PandaMeasurementModel(units=args.hidden_units, missing_modalities=["gripper_sensors"]), ) pf_force_model = panda_models.PandaParticleFilterNetwork( panda_models.PandaDynamicsModel(), panda_models.PandaMeasurementModel(units=args.hidden_units, missing_modalities=["image"]), ) weight_model = fusion.ConstantWeights(state_dim=1, use_softmax=True, use_log_softmax=True) pf_fusion_model = fusion_pf.ParticleFusionModel(pf_image_model, pf_force_model, weight_model) buddy = fannypack.utils.Buddy( experiment_name + "_unimodal", pf_fusion_model,