def __init__(self, N): self.N = N self.CacheRecency = Disk(N) self.CacheFrequecy = priorityqueue(N) self.Hist1 = Disk(N) self.Hist2 = priorityqueue(N) ## Config variables self.decayRate = 1 self.epsilon = 0.05 self.lamb = 0.05 self.learning_phase = N / 2 # self.error_discount_rate = (0.005)**(1.0/N) ## TODO ADD BACK self.error_discount_rate = 1 ## self.learning = True self.policy = 0 self.evictionTime = {} self.policyUsed = {} self.weightsUsed = {} self.freq = {} ## TODO add decay_time and decay_factor self.decay_time = N self.decay_factor = 1 ## Accounting variables self.time = 0 self.W = np.array([.5, .5], dtype=np.float32) self.X = np.array([], dtype=np.int32) self.Y1 = np.array([]) self.Y2 = np.array([])
def __init__(self, N, decay=1): self.N = N self.PQ = priorityqueue(N) self.unique = {} self.unique_cnt = 0 self.pollution_dat_x = [] self.pollution_dat_y = [] self.time = 0
def __init__(self, N): self.N = N self.CacheRecency = Disk(N) self.CacheFrequecy = priorityqueue(N) self.Hist1 = Disk(N) self.Hist2 = priorityqueue(N) ## Config variables self.decayRate = 1 self.epsilon = 0.90 self.lamb = 0.05 self.learning_phase = N/2 self.error_discount_rate = (0.005)**(1.0/N) # self.error_discount_rate = 1 ## self.learning = True self.policy = 0 self.evictionTime = {} self.policyUsed = {} self.weightsUsed = {} self.freq = {} ## TODO add decay_time and decay_factor self.decay_time = N self.decay_factor = 1 ## Accounting variables self.time = 0 self.W = np.zeros((10,2)) self.W[:,:] = 0.5 self.X = np.array([],dtype=np.int32) self.Y1 = np.array([]) self.Y2 = np.array([]) ### self.q = Queue.Queue() self.sum = 0 self.NewPages = []
def __init__(self, param): assert 'cache_size' in param self.N = int(param['cache_size']) self.PQ = priorityqueue(self.N) self.unique = {} self.unique_cnt = 0 self.pollution_dat_x = [] self.pollution_dat_y = [] self.time = 0
def __init__(self, N,decay=1): self.N = N self.PQ = priorityqueue(N) self.time = 0