EPSILON = 0.05 # label threshold BATCH_SIZE = 100 # batch size for both labeled and unlabeled data """ Percentage of the unlabeled data to be used. If 1.0, entire training data is used. """ UNLAB_RAT = 1.0 # determines the deviation of the noise added to weights LANGEVIN_COEF = 10**-5 MOMENTUM = 0.9 WEIGHT_DECAY = 0 # setup directories and set dataset/net_name dependent parameters: NB_LABELLED = 4000 NB_OUTER_ITER = 135 NB_INNER_ITER = 20 nb_outer_start = 0 net_w_orig = ResNet18().cuda() file_name = '%s_%s' % (DATASET, NET_NAME) unsup_nll_loss = unsup_nll(BATCH_SIZE) for path in [PLOT_FOLDER, Y_U_FOLDER]: if not os.path.exists(path): os.makedirs(path) # load dataloaders: loaders = get_loaders(NB_LABELLED, BATCH_SIZE, UNLAB_RAT, AUGMENT_TYPE) lab_inds = loaders["lab_inds"] test_set = loaders["test_set"] testloader = loaders["testloader"] trainloader_l = loaders["trainloader_l"] trainloader_u = loaders["trainloader_u"] trainset_l = loaders["trainset_l"]
EPSILON = 0.05 # label threshold BATCH_SIZE = 100 # batch size for both labeled and unlabeled data """ Percentage of the unlabeled data to be used. If 1.0, entire training data is used. """ UNLAB_RAT = 1.0 # determines the deviation of the noise added to weights LANGEVIN_COEF = 10**-5 MOMENTUM = 0.9 WEIGHT_DECAY = 0 # setup directories and set dataset/net_name dependent parameters: NB_LABELLED = 1000 NB_OUTER_ITER = 30 NB_INNER_ITER = 10 nb_outer_start = 0 net_w_orig = ResNet18(n=5).cuda() file_name = '%s_%s' % (DATASET, NET_NAME) unsup_nll_loss = unsup_nll(BATCH_SIZE) for path in [PLOT_FOLDER, Y_U_FOLDER]: if not os.path.exists(path): os.makedirs(path) # load dataloaders: loaders = get_loaders(NB_LABELLED, BATCH_SIZE, UNLAB_RAT) lab_inds = loaders["lab_inds"] test_set = loaders["test_set"] testloader = loaders["testloader"] trainloader_l = loaders["trainloader_l"] trainloader_u = loaders["trainloader_u"] trainset_l = loaders["trainset_l"]