def _get_proposal_pairs(self, proposals): proposal_pairs = [] for i, proposals_per_image in enumerate(proposals): box_subj = proposals_per_image.bbox box_obj = proposals_per_image.bbox box_subj = box_subj.unsqueeze(1).repeat(1, box_subj.shape[0], 1) box_obj = box_obj.unsqueeze(0).repeat(box_obj.shape[0], 1, 1) proposal_box_pairs = torch.cat((box_subj.view(-1, 4), box_obj.view(-1, 4)), 1) idx_subj = torch.arange(box_subj.shape[0]).view(-1, 1, 1).repeat(1, box_obj.shape[0], 1).to(proposals_per_image.bbox.device) idx_obj = torch.arange(box_obj.shape[0]).view(1, -1, 1).repeat(box_subj.shape[0], 1, 1).to(proposals_per_image.bbox.device) proposal_idx_pairs = torch.cat((idx_subj.view(-1, 1), idx_obj.view(-1, 1)), 1) keep_idx = (proposal_idx_pairs[:, 0] != proposal_idx_pairs[:, 1]).nonzero().view(-1) # if we filter non overlap bounding boxes if self.cfg.MODEL.ROI_RELATION_HEAD.FILTER_NON_OVERLAP: ious = boxlist_iou(proposals_per_image, proposals_per_image).view(-1) ious = ious[keep_idx] keep_idx = keep_idx[(ious > 0).nonzero().view(-1)] proposal_idx_pairs = proposal_idx_pairs[keep_idx] proposal_box_pairs = proposal_box_pairs[keep_idx] proposal_pairs_per_image = BoxPairList(proposal_box_pairs, proposals_per_image.size, proposals_per_image.mode) proposal_pairs_per_image.add_field("idx_pairs", proposal_idx_pairs) proposal_pairs.append(proposal_pairs_per_image) return proposal_pairs
def _get_proposal_pairs(self, proposals): proposal_pairs = [] for i, proposals_per_image in enumerate(proposals): box_subj = proposals_per_image.bbox box_obj = proposals_per_image.bbox box_subj = box_subj.unsqueeze(1).repeat(1, box_subj.shape[0], 1) box_obj = box_obj.unsqueeze(0).repeat(box_obj.shape[0], 1, 1) proposal_box_pairs = torch.cat( (box_subj.view(-1, 4), box_obj.view(-1, 4)), 1) idx_subj = torch.arange(box_subj.shape[0]).view(-1, 1, 1).repeat( 1, box_obj.shape[0], 1).to(proposals_per_image.bbox.device) idx_obj = torch.arange(box_obj.shape[0]).view(1, -1, 1).repeat( box_subj.shape[0], 1, 1).to(proposals_per_image.bbox.device) proposal_idx_pairs = torch.cat( (idx_subj.view(-1, 1), idx_obj.view(-1, 1)), 1) non_duplicate_idx = (proposal_idx_pairs[:, 0] != proposal_idx_pairs[:, 1]).nonzero() proposal_idx_pairs = proposal_idx_pairs[non_duplicate_idx.view(-1)] proposal_box_pairs = proposal_box_pairs[non_duplicate_idx.view(-1)] proposal_pairs_per_image = BoxPairList(proposal_box_pairs, proposals_per_image.size, proposals_per_image.mode) proposal_pairs_per_image.add_field("idx_pairs", proposal_idx_pairs) proposal_pairs.append(proposal_pairs_per_image) return proposal_pairs
def match_targets_to_proposals(self, proposal, target): match_quality_matrix = boxlist_iou(target, proposal) temp = [] target_box_pairs = [] for i in range(match_quality_matrix.shape[0]): for j in range(match_quality_matrix.shape[0]): match_i = match_quality_matrix[i].view(1, -1) match_j = match_quality_matrix[j].view(-1, 1) match_ij = (match_i + match_j) / 2 match_ij.view(-1)[::match_quality_matrix.shape[1]] = 0 temp.append(match_ij) boxi = target.bbox[i] boxj = target.bbox[j] box_pair = torch.cat((boxi, boxj), 0) target_box_pairs.append(box_pair) match_pair_quality_matrix = torch.stack(temp, 0).view(len(temp), -1) target_box_pairs = torch.stack(target_box_pairs, 0) target_pair = BoxPairList(target_box_pairs, target.size, target.mode) target_pair.add_field("labels", target.get_field("pred_labels").view(-1)) box_subj = proposal.bbox box_obj = proposal.bbox box_subj = box_subj.unsqueeze(1).repeat(1, box_subj.shape[0], 1) box_obj = box_obj.unsqueeze(0).repeat(box_obj.shape[0], 1, 1) proposal_box_pairs = torch.cat( (box_subj.view(-1, 4), box_obj.view(-1, 4)), 1) proposal_pairs = BoxPairList(proposal_box_pairs, proposal.size, proposal.mode) idx_subj = torch.arange(box_subj.shape[0]).view(-1, 1, 1).repeat( 1, box_obj.shape[0], 1).to(proposal.bbox.device) idx_obj = torch.arange(box_obj.shape[0]).view(1, -1, 1).repeat( box_subj.shape[0], 1, 1).to(proposal.bbox.device) proposal_idx_pairs = torch.cat( (idx_subj.view(-1, 1), idx_obj.view(-1, 1)), 1) proposal_pairs.add_field("idx_pairs", proposal_idx_pairs) # matched_idxs = self.proposal_matcher(match_quality_matrix) matched_idxs = self.proposal_pair_matcher(match_pair_quality_matrix) # Fast RCNN only need "labels" field for selecting the targets # target = target.copy_with_fields("pred_labels") # get the targets corresponding GT for each proposal # NB: need to clamp the indices because we can have a single # GT in the image, and matched_idxs can be -2, which goes # out of bounds if self.use_matched_pairs_only and ( matched_idxs >= 0).sum() > self.minimal_matched_pairs: # filter all matched_idxs < 0 proposal_pairs = proposal_pairs[matched_idxs >= 0] matched_idxs = matched_idxs[matched_idxs >= 0] matched_targets = target_pair[matched_idxs.clamp(min=0)] matched_targets.add_field("matched_idxs", matched_idxs) return matched_targets, proposal_pairs
def prepare_boxpairlist(self, boxes, scores, image_shape): """ Returns BoxList from `boxes` and adds probability scores information as an extra field `boxes` has shape (#detections, 4 * #classes), where each row represents a list of predicted bounding boxes for each of the object classes in the dataset (including the background class). The detections in each row originate from the same object proposal. `scores` has shape (#detection, #classes), where each row represents a list of object detection confidence scores for each of the object classes in the dataset (including the background class). `scores[i, j]`` corresponds to the box at `boxes[i, j * 4:(j + 1) * 4]`. """ boxes = boxes.reshape(-1, 8) scores = scores.reshape(-1) boxlist = BoxPairList(boxes, image_shape, mode="xyxy") boxlist.add_field("scores", scores) return boxlist
def _fullsample_test(self, proposals): """ This method get all subject-object pairs, and return the proposals. Note: this function keeps a state. Arguments: proposals (list[BoxList]) """ proposal_pairs = [] for i, proposals_per_image in enumerate(proposals): box_subj = proposals_per_image.bbox box_obj = proposals_per_image.bbox box_subj = box_subj.unsqueeze(1).repeat(1, box_subj.shape[0], 1) box_obj = box_obj.unsqueeze(0).repeat(box_obj.shape[0], 1, 1) proposal_box_pairs = torch.cat( (box_subj.view(-1, 4), box_obj.view(-1, 4)), 1) idx_subj = torch.arange(box_subj.shape[0]).view(-1, 1, 1).repeat( 1, box_obj.shape[0], 1).to(proposals_per_image.bbox.device) idx_obj = torch.arange(box_obj.shape[0]).view(1, -1, 1).repeat( box_subj.shape[0], 1, 1).to(proposals_per_image.bbox.device) proposal_idx_pairs = torch.cat( (idx_subj.view(-1, 1), idx_obj.view(-1, 1)), 1) keep_idx = (proposal_idx_pairs[:, 0] != proposal_idx_pairs[:, 1]).nonzero().view(-1) # if we filter non overlap bounding boxes if self.cfg.MODEL.ROI_RELATION_HEAD.FILTER_NON_OVERLAP: ious = boxlist_iou(proposals_per_image, proposals_per_image).view(-1) ious = ious[keep_idx] keep_idx = keep_idx[(ious > 0).nonzero().view(-1)] proposal_idx_pairs = proposal_idx_pairs[keep_idx] proposal_box_pairs = proposal_box_pairs[keep_idx] proposal_pairs_per_image = BoxPairList(proposal_box_pairs, proposals_per_image.size, proposals_per_image.mode) proposal_pairs_per_image.add_field("idx_pairs", proposal_idx_pairs) proposal_pairs.append(proposal_pairs_per_image) return proposal_pairs