예제 #1
0

for i in all_link_meshes.keys():
	
	(trans, rot) = listener.lookupTransform('/panda_'+i , '/world', rospy.Time(0))
	link_pose = np.array([trans.x, trans.y, trans,z])
	link_quat = np.array([rot.x, rot.y, rot,z, rot.w])
	l_rotMat = R.from_quat(link_quat).as_dcm()
	mesh_pose = np.hstack (( l_rotMat, link_pose )) 
	mesh_pose = np.vstack(( mesh_pose, [0, 0, 0, 1] ))
	## Mesh Transformation of each link to camera coordinates 
	mesh_pose = np.dot(mesh_pose , np.linalg.inv(cam_tf) )
	all_link_meshes(i) = np.matmul( mesh_pose, np.array(o3d.io.read_triangle_mesh('/home/ahmad3/catkin_ws/src/franka_ros/franka_description/meshes/visual/'+ i +'.ply')) )
	panda_points = np.vstack(( panda_points , all_link_meshes(i).copy() )) 

''' Perspective projection of links into Depth Image '''

panda_points = np.hstack(( cloud_temp, np.ones((cloud_temp.shape[0], 1)) ))
cam2optical = R.from_eul(['zyx', 1.57, 0, 1.57]).as_dcm() 
cam2optical = np.hstack(( np.vstack(( optical2cam , [0,0,0] )) , np.array([[0],[0],[0],[1]]) ))
panda_points = np.matmul( cam2optical, panda_points.T )

pub_img = np.zeros((480, 640)).astype(np.uint8)
panda_points_2D = bs_utils.project_p3d(panda_points.T , 1, K=cfg.intrinsic_matrix['openDR']):
panda_points_img = bs_utils.draw_p2ds(pub_img, panda_points_2D, color=(255,255,255), 1)

pub.publish(ros_numpy.msgify(panda_points_img.astype(np.uint8), Image))
'''
panda_points_2D = np.matmul(intrinsic_mat , panda_points ).T 
panda_points_2D = np.hstack(( panda_points_2D[:,0]/panda_points_2D[:,2], panda_points_2D[:,1]/panda_points_2D[:,2] ))''' 
예제 #2
0
파일: api.py 프로젝트: DarkGeekMS/PVN3D
class RGBDPoseAPI():
    r"""Interface of PVN3D network for inference on a single RGBD image.

    Parameters
    ----------
    weights_path : str
        Path to weights file of the network
    """
    def __init__(self, weights_path):
        # initialize configs and model object
        self.config = Config(dataset_name='ycb')
        self.bs_utils = Basic_Utils(self.config)
        self.model = self.define_network(weights_path)
        self.rgb = None
        self.cld = None
        self.cld_rgb_nrm = None
        self.choose = None
        self.cls_id_lst = None

    def load_checkpoint(self,
                        model=None,
                        optimizer=None,
                        filename="checkpoint"):
        # load network checkpoint from weights file
        filename = "{}.pth.tar".format(filename)
        if os.path.isfile(filename):
            print("==> Loading from checkpoint '{}'".format(filename))
            try:
                checkpoint = torch.load(filename)
            except:
                checkpoint = pkl.load(open(filename, "rb"))
            epoch = checkpoint["epoch"]
            it = checkpoint.get("it", 0.0)
            best_prec = checkpoint["best_prec"]
            if model is not None and checkpoint["model_state"] is not None:
                model.load_state_dict(checkpoint["model_state"])
            if optimizer is not None and checkpoint[
                    "optimizer_state"] is not None:
                optimizer.load_state_dict(checkpoint["optimizer_state"])
            print("==> Done")
            return it, epoch, best_prec
        else:
            print("==> Checkpoint '{}' not found".format(filename))
            return None

    def define_network(self, weights_path):
        # define model object on GPU
        model = PVN3D(num_classes=self.config.n_objects,
                      pcld_input_channels=6,
                      pcld_use_xyz=True,
                      num_points=self.config.n_sample_points).cuda()
        # convert batch norm into synchornized batch norm
        model = convert_model(model)
        # model to GPU
        model.cuda()
        # load weights
        checkpoint_status = self.load_checkpoint(model,
                                                 None,
                                                 filename=weights_path[:-8])
        # convert model to distributed mode
        model = nn.DataParallel(model)
        return model

    def get_normal(self, cld):
        # get normals from point cloud
        cloud = pcl.PointCloud()
        cld = cld.astype(np.float32)
        cloud.from_array(cld)
        ne = cloud.make_NormalEstimation()
        kdtree = cloud.make_kdtree()
        ne.set_SearchMethod(kdtree)
        ne.set_KSearch(50)
        n = ne.compute()
        n = n.to_array()
        return n

    def preprocess_rgbd(self, image, depth, cam_scale=25.0):
        # preprocess RGBD data to be passed to network
        # get camera intrinsics
        K = self.config.intrinsic_matrix['ycb_K1']

        # fill missing points in depth map
        dpt = self.bs_utils.fill_missing(depth, cam_scale, 1)

        rgb = np.transpose(image, (2, 0, 1))
        # convert depth map to point cloud
        cld, choose = self.bs_utils.dpt_2_cld(dpt, cam_scale, K)
        normal = self.get_normal(cld)[:, :3]
        normal[np.isnan(normal)] = 0.0

        # construct complete RGB point cloud
        rgb_lst = []
        for ic in range(rgb.shape[0]):
            rgb_lst.append(rgb[ic].flatten()[choose].astype(np.float32))
        rgb_pt = np.transpose(np.array(rgb_lst), (1, 0)).copy()

        choose = np.array([choose])
        choose_2 = np.array([i for i in range(len(choose[0, :]))])

        if len(choose_2) < 400:
            return None
        if len(choose_2) > self.config.n_sample_points:
            c_mask = np.zeros(len(choose_2), dtype=int)
            c_mask[:self.config.n_sample_points] = 1
            np.random.shuffle(c_mask)
            choose_2 = choose_2[c_mask.nonzero()]
        else:
            choose_2 = np.pad(choose_2,
                              (0, self.config.n_sample_points - len(choose_2)),
                              'wrap')

        cld_rgb_nrm = np.concatenate((cld, rgb_pt, normal), axis=1)
        cld = cld[choose_2, :]
        cld_rgb_nrm = cld_rgb_nrm[choose_2, :]
        choose = choose[:, choose_2]

        # define classes indices to be considered
        cls_id_lst = np.array(range(1, 22))

        # convert processed data into torch tensors
        rgb = torch.from_numpy(rgb.astype(np.float32))
        cld = torch.from_numpy(cld.astype(np.float32))
        cld_rgb_nrm = torch.from_numpy(cld_rgb_nrm.astype(np.float32))
        choose = torch.LongTensor(choose.astype(np.int32))
        cls_id_lst = torch.LongTensor(cls_id_lst.astype(np.int32))

        # reshape and copy to GPU
        self.rgb = rgb.reshape(
            (1, rgb.shape[0], rgb.shape[1], rgb.shape[2])).cuda()
        self.cld = cld.reshape((1, cld.shape[0], cld.shape[1])).cuda()
        self.cld_rgb_nrm = cld_rgb_nrm.reshape(
            (1, cld_rgb_nrm.shape[0], cld_rgb_nrm.shape[1])).cuda()
        self.choose = choose.reshape(
            (1, choose.shape[0], choose.shape[1])).cuda()
        self.cls_id_lst = cls_id_lst.reshape((1, cls_id_lst.shape[0]))

    def get_poses(self, save_results=True):
        # perform inference and return objects' poses
        # model to eval mode
        self.model.eval()
        # perform inference on defined model
        with torch.set_grad_enabled(False):
            # network forward pass
            pred_kp_of, pred_rgbd_seg, pred_ctr_of = self.model(
                self.cld_rgb_nrm, self.rgb, self.choose)
            _, classes_rgbd = torch.max(pred_rgbd_seg, -1)
            # calculate poses by voting, clustering and linear fitting
            pred_cls_ids, pred_pose_lst = cal_frame_poses(
                self.cld[0], classes_rgbd[0], pred_ctr_of[0], pred_kp_of[0],
                True, self.config.n_objects, True)
            # visualize predicted poses
            if save_results:
                np_rgb = self.rgb.cpu().numpy().astype("uint8")[0].transpose(
                    1, 2, 0).copy()
                np_rgb = np_rgb[:, :, ::-1].copy()
                ori_rgb = np_rgb.copy()
                # loop over each class id
                for cls_id in self.cls_id_lst[0].cpu().numpy():
                    idx = np.where(pred_cls_ids == cls_id)[0]
                    if len(idx) == 0:
                        continue
                    pose = pred_pose_lst[idx[0]]
                    obj_id = int(cls_id)
                    mesh_pts = self.bs_utils.get_pointxyz(
                        obj_id, ds_type='ycb').copy()
                    mesh_pts = np.dot(mesh_pts, pose[:, :3].T) + pose[:, 3]
                    K = self.config.intrinsic_matrix["ycb_K1"]
                    mesh_p2ds = self.bs_utils.project_p3d(mesh_pts, 1.0, K)
                    color = self.bs_utils.get_label_color(obj_id,
                                                          n_obj=22,
                                                          mode=1)
                    np_rgb = self.bs_utils.draw_p2ds(np_rgb,
                                                     mesh_p2ds,
                                                     color=color)
                # save output visualization
                vis_dir = os.path.join(self.config.log_eval_dir, "pose_vis")
                if not os.path.exists(vis_dir):
                    os.system('mkdir -p {}'.format(vis_dir))
                f_pth = os.path.join(vis_dir, "out.jpg")
                cv2.imwrite(f_pth, np_rgb)
        # return prediction
        return pred_cls_ids, pred_pose_lst