예제 #1
0
p = "data/Letter-low"
ds = "Letter-low"
z = read_tud(p, ds, False)

import Visualization as v
G1 = z[0]["1"][0]
pos1 = t.get_pos(G1)
G2 = z[0]["9"][0]
pos2 = t.get_pos(G2)
v.cool_GIF(G1, pos1, G2, pos2, frames=720)

######################## Binary ShapeMatcher Models ###########################
matrices = [None, None, None, None]  # For you to reference later

alienDict = read_sm("data/Shape-Matcher-models/ALIEN.xml")
t.rename_key(alienDict, oldKey="models/ALIEN/ALIEN", newKey="alien")

camelDict = read_sm("data/Shape-Matcher-models/camel.xml")
t.rename_key(camelDict, oldKey="models/camel/camel", newKey="camel")

eagleDict = read_sm("data/Shape-Matcher-models/eagle.xml")
t.rename_key(eagleDict, oldKey="models/eagle/eagle", newKey="eagle")

kangaDict = read_sm("data/Shape-Matcher-models/KANGAROO.xml")
t.rename_key(kangaDict, oldKey="models/KANGAROO/KANGAROO", newKey="kangaroo")

# see data/DataCleaning.py for how we picked outliers
biasedAliens = [
    'alien67', 'alien0', 'alien1', 'alien2', 'alien4', 'alien5', 'alien6',
    'alien9', 'alien16', 'alien18', 'alien19', 'alien27', 'alien28', 'alien30',
    'alien31', 'alien32', 'alien33', 'alien34', 'alien36', 'alien37',
예제 #2
0
def read_ppm(DBname, ppmDir, ppmList=None, SMD=None):
    if SMD == None:
        SMD = '../images/ShapeMatcher'
    print("Converting", ppmDir, "...")

    with cd(SMD):  # Directory finagling begins

        with cd(ppmDir):  # finagling x 2
            OS = p.system()
            if OS == 'Windows':
                contents = cmd('dir')
            elif OS in ['Darwin', 'Linux']:
                contents = cmd('ls')
            else:
                s = sorry.format("Unknown Operating System")
                print(s)
                return None

        if contents.returncode != 0:
            s = sorry.format("Couldn't read the directory.")
            print(s)
            return None

        # There is a built in ShapeMatcher commands that reads everything in a folder
        # But I found it to be buggy at times
        string = str(contents)
        string = string[string.find(ppmDir) + 1:]
        fileList = string.split(".ppm")
        fileList = fileList[:-1]

        # Need to work backwards from the end of the file name
        # This is why file names can't have spaces
        for i in range(len(fileList)):
            file = None
            j = -1
            while j >= (-1 * len(fileList[i])):
                if fileList[i][j] == " ":
                    break
                j -= 1
            j += 1
            file = fileList[i][j + len(fileList[i]):]
            file += ".ppm"
            fileList[i] = file

        # Now we have a list of all the files in the folder
        # So we can make a database consisting of all of these files

        # Start building the sm command for creating a database file
        createDB = 'sm -doExtSimp 0 -c ' + DBname + '.db'

        # Now add each of the files
        for file in fileList:
            createDB += " " + ppmDir + '/' + file

        # Make a database of the graphs
        cmd(createDB)
        # Convert database to XML file
        toXML = "sm -toXML " + DBname + ".xml " + DBname + ".db"
        cmd(toXML)
        print("----------")
        g = read_sm(DBname + ".xml")
        print("\t----------")
        t.rename_key(g, list(g.keys())[0], DBname)

    print("\t----------")
    print("\nConversion complete. Returning NetworkX graph object.")
    print("\nYour", DBname, "database and XML file should be in ", SMD)

    return g
예제 #3
0
"""
Created on Tue Jul  7 19:36:23 2020

@author: Candace Todd
"""
# Script recording our data cleaning methodology
# Note: this is an interactive program

import DataReader as dr
import networkx as nx
import lib.Tools as t
import matplotlib.pyplot as plt

################## Code for picking out outlier binary images ########################
alienDict = dr.read_sm("data/Shape-Matcher-models/ALIEN.xml")
t.rename_key(alienDict, oldKey="models/ALIEN/ALIEN", newKey="alien")

childDict = dr.read_sm("data/Shape-Matcher-models/m_chld.xml")
t.rename_key(childDict, oldKey="models/m_chld/m_chld", newKey="child")

camelDict = dr.read_sm("data/Shape-Matcher-models/camel.xml")
t.rename_key(camelDict, oldKey="models/camel/camel", newKey="camel")
# 17 is a good camel model

horseDict = dr.read_sm("data/Shape-Matcher-models/HORSE.xml")
t.rename_key(horseDict, oldKey="models/HORSE/HORSE", newKey="horse")
# 52 isa good horse model

eagleDict = dr.read_sm("data/Shape-Matcher-models/eagle.xml")
t.rename_key(eagleDict, oldKey="models/eagle/eagle", newKey="eagle")
# 35 is a good eagle model