import lib_data_operation as tfm_data

# Required libraries
import os
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
from sklearn.model_selection import LeavePGroupsOut

# IMPORTING REQUIRED DATASETS
df_weight_signaling, df_weight_metabolic_signaling = tfm_data.def_load_weight_pathways(
)

df_paper_9437, df_signaling, df_metabolic_signaling = tfm_data.def_load_dataset(
    ['cell_type'] + list(df_weight_signaling.index.values),
    ['cell_type'] + list(df_weight_metabolic_signaling.index.values))

# DELETE UNUSED DATASET
del (df_weight_signaling)
del (df_weight_metabolic_signaling)

# DEFAULT VALUES
n_cells_out_list = [2, 4, 6, 8]
n_experiment_ = 20

# TARGET VARIABLE NAME
target_ = 'cell_type'


def def_get_n_psplits(X, y, groups, p, n):
예제 #2
0
for i_scaling in TYPE_OF_SCALING:

    # THE LOCATION of THE RESULT of SCORE and MODEL
    # path_hyperband_ = tfm_data.def_check_create_path('kt_result', '')
    path_hyperband_ = tfm_data.def_check_create_path('kt_result', 'delete')
    path_output_result = tfm_data.def_check_create_path(
        'kt_result', 'design_no_co_' + str(i_scaling))
    path_model = tfm_data.def_check_create_path(
        'kt_result', 'models_no_co_' + str(i_scaling))

    # LOADING REQUIRED DATASETS
    df_weight_signaling, df_weight_metabolic_signaling = tfm_data.def_load_weight_pathways(
    )
    df_paper, df_signaling, df_metabolic_signaling = tfm_data.def_load_dataset(
        ['cell_type'] + list(df_weight_signaling.index.values),
        ['cell_type'] + list(df_weight_metabolic_signaling.index.values),
        row_scaling=i_scaling,
        retrieval=False)

    df_weight_dense = pd.DataFrame(df_paper.columns[1:]).set_index('Sample')

    for i in range(dense_layer):
        df_weight_dense['dense' + str(i)] = 1.0

    df_weight_paper_signaling_dense_pathway = df_weight_dense.merge(
        pd.DataFrame(df_paper.columns[1:]).set_index('Sample').merge(
            df_weight_signaling, left_index=True, right_index=True,
            how='left').fillna(0),
        left_index=True,
        right_index=True,
        how='inner')