ss_a1_model.save( os.path.join(path_model_cell_out + str('/ss_a1_model_metabolic_signaling'))) ss_a2_model.save( os.path.join(path_model_cell_out + str('/ss_a2_model_metabolic_signaling'))) ss_b1_model.save( os.path.join(path_model_cell_out + str('/ss_b1_model_metabolic_signaling'))) ss_b2_model.save( os.path.join(path_model_cell_out + str('/ss_b2_model_metabolic_signaling'))) print('MODELS EXPORTED to "{}"'.format(path_model_cell_out)) ss_dense_hp = tfm_kt.def_hp(ss_dense_hp, 'ss_dense_hp') ss_a1_hp = tfm_kt.def_hp(ss_a1_hp, 'ss_a1_hp') ss_a2_hp = tfm_kt.def_hp(ss_a2_hp, 'ss_a2_hp') ss_b1_hp = tfm_kt.def_hp(ss_b1_hp, 'ss_b1_hp') ss_b2_hp = tfm_kt.def_hp(ss_b2_hp, 'ss_b2_hp') df_hp = pd.concat([ss_dense_hp, ss_a1_hp, ss_a2_hp, ss_b1_hp, ss_b2_hp]) df_hp = df_hp.set_index('hp') df_hp.to_csv(os.path.join(path_output_result + '/kt_hyperparameters_metabolic_signaling_' + n_out_cell_type + '.txt'), sep=';') print('RESULT EXPORTED to "{}"'.format(path_output_result))
project_name_='kt_ss_p2_metabolic_signaling_experiment_', second_layer=False, path_=path_hyperband_, epochs_=epochs_default, batch_size_=batch_size_default).build() ss_p1_model.save(os.path.join(path_model + str('/ss_p1_model_default'))) ss_p2_sig_model.save( os.path.join(path_model + str('/ss_p2_model_signaling'))) ss_p2_met_sig_model.save( os.path.join(path_model + str('/ss_p2_model_metabolic_signaling'))) print('MODELS EXPORTED to "{}"'.format(path_model)) ss_p1_hp = tfm_kt.def_hp(ss_p1_hp, 'ss_p1_hp') ss_p2_sig_hp = tfm_kt.def_hp(ss_p2_sig_hp, 'ss_p2_sig_hp') ss_p2_met_sig_hp = tfm_kt.def_hp(ss_p2_met_sig_hp, 'ss_p2_met_sig_hp') df_hp = pd.concat([ss_p1_hp, ss_p2_sig_hp, ss_p2_met_sig_hp]) df_hp = df_hp.set_index('hp') df_hp.to_csv(os.path.join(path_output_result + '/kt_hyperparameters_design_p_no_co_' + str(i_scaling) + '.txt'), sep=';') print('RESULT EXPORTED to "{}"'.format(path_output_result)) print("\n\nDesign P dense\n") print(ss_p1_model.summary())