예제 #1
0
    ss_a1_model.save(
        os.path.join(path_model_cell_out +
                     str('/ss_a1_model_metabolic_signaling')))
    ss_a2_model.save(
        os.path.join(path_model_cell_out +
                     str('/ss_a2_model_metabolic_signaling')))

    ss_b1_model.save(
        os.path.join(path_model_cell_out +
                     str('/ss_b1_model_metabolic_signaling')))
    ss_b2_model.save(
        os.path.join(path_model_cell_out +
                     str('/ss_b2_model_metabolic_signaling')))
    print('MODELS EXPORTED to "{}"'.format(path_model_cell_out))

    ss_dense_hp = tfm_kt.def_hp(ss_dense_hp, 'ss_dense_hp')

    ss_a1_hp = tfm_kt.def_hp(ss_a1_hp, 'ss_a1_hp')
    ss_a2_hp = tfm_kt.def_hp(ss_a2_hp, 'ss_a2_hp')

    ss_b1_hp = tfm_kt.def_hp(ss_b1_hp, 'ss_b1_hp')
    ss_b2_hp = tfm_kt.def_hp(ss_b2_hp, 'ss_b2_hp')

    df_hp = pd.concat([ss_dense_hp, ss_a1_hp, ss_a2_hp, ss_b1_hp, ss_b2_hp])

    df_hp = df_hp.set_index('hp')
    df_hp.to_csv(os.path.join(path_output_result +
                              '/kt_hyperparameters_metabolic_signaling_' +
                              n_out_cell_type + '.txt'),
                 sep=';')
    print('RESULT EXPORTED to "{}"'.format(path_output_result))
예제 #2
0
        project_name_='kt_ss_p2_metabolic_signaling_experiment_',
        second_layer=False,
        path_=path_hyperband_,
        epochs_=epochs_default,
        batch_size_=batch_size_default).build()

    ss_p1_model.save(os.path.join(path_model + str('/ss_p1_model_default')))

    ss_p2_sig_model.save(
        os.path.join(path_model + str('/ss_p2_model_signaling')))
    ss_p2_met_sig_model.save(
        os.path.join(path_model + str('/ss_p2_model_metabolic_signaling')))

    print('MODELS EXPORTED to "{}"'.format(path_model))

    ss_p1_hp = tfm_kt.def_hp(ss_p1_hp, 'ss_p1_hp')

    ss_p2_sig_hp = tfm_kt.def_hp(ss_p2_sig_hp, 'ss_p2_sig_hp')
    ss_p2_met_sig_hp = tfm_kt.def_hp(ss_p2_met_sig_hp, 'ss_p2_met_sig_hp')

    df_hp = pd.concat([ss_p1_hp, ss_p2_sig_hp, ss_p2_met_sig_hp])

    df_hp = df_hp.set_index('hp')
    df_hp.to_csv(os.path.join(path_output_result +
                              '/kt_hyperparameters_design_p_no_co_' +
                              str(i_scaling) + '.txt'),
                 sep=';')
    print('RESULT EXPORTED to "{}"'.format(path_output_result))

    print("\n\nDesign P dense\n")
    print(ss_p1_model.summary())