예제 #1
0
파일: label_digits.py 프로젝트: ckbjimmy/py
def main():
    quota = 10  # ask human to label 30 samples
    n_classes = 5
    E_out1, E_out2 = [], []

    trn_ds, tst_ds, ds = split_train_test(n_classes)
    trn_ds2 = copy.deepcopy(trn_ds)

    qs = UncertaintySampling(trn_ds, method='lc', model=LogisticRegression())
    qs2 = RandomSampling(trn_ds2)

    model = LogisticRegression()

    fig = plt.figure()
    ax = fig.add_subplot(2, 1, 1)
    ax.set_xlabel('Number of Queries')
    ax.set_ylabel('Error')

    model.train(trn_ds)
    E_out1 = np.append(E_out1, 1 - model.score(tst_ds))
    model.train(trn_ds2)
    E_out2 = np.append(E_out2, 1 - model.score(tst_ds))

    query_num = np.arange(0, 1)
    p1, = ax.plot(query_num, E_out1, 'g', label='qs Eout')
    p2, = ax.plot(query_num, E_out2, 'k', label='random Eout')
    plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05), fancybox=True,
               shadow=True, ncol=5)
    plt.show(block=False)

    img_ax = fig.add_subplot(2, 1, 2)
    box = img_ax.get_position()
    img_ax.set_position([box.x0, box.y0 - box.height * 0.1, box.width,
                         box.height * 0.9])
    # Give each label its name (labels are from 0 to n_classes-1)
    lbr = InteractiveLabeler(label_name=[str(lbl) for lbl in range(n_classes)])

    for i in range(quota):
        ask_id = qs.make_query()
        print("asking sample from Uncertainty Sampling")
        # reshape the image to its width and height
        lb = lbr.label(trn_ds.data[ask_id][0].reshape(8, 8))
        trn_ds.update(ask_id, lb)
        model.train(trn_ds)
        E_out1 = np.append(E_out1, 1 - model.score(tst_ds))

        ask_id = qs2.make_query()
        print("asking sample from Random Sample")
        lb = lbr.label(trn_ds2.data[ask_id][0].reshape(8, 8))
        trn_ds2.update(ask_id, lb)
        model.train(trn_ds2)
        E_out2 = np.append(E_out2, 1 - model.score(tst_ds))
예제 #2
0
def main():
    global pos_filepath, dataset_filepath, csv_filepath, vectors_list, ids_list
    dataset_filepath = "/Users/dndesign/Desktop/active_learning/vecteurs_et_infos/vectors_2015.txt"
    csv_filepath = "/Users/dndesign/Desktop/active_learning/donnees/corpus_2015_id-time-text.csv"
    pos_filepath = "/Users/dndesign/Desktop/active_learning/donnees/oriane_pos_id-time-text.csv"
    vectors_list, ids_list = get_vectors_list(dataset_filepath)

    timestr = time.strftime("%Y%m%d_%H%M%S")
    text_file = codecs.open("task_" + str(timestr) + ".txt", "w", "utf-8")

    print("Loading data...")
    text_file.write("Loading data...\n")
    # Open this file
    t0 = time.time()
    file = openfile_txt(dataset_filepath)
    num_lines = sum(1 for line in file)
    print("Treating " + str(num_lines) + " entries...")
    text_file.write("Treating : %s entries...\n" % str(num_lines))

    # Number of queries to ask human to label
    quota = 10
    E_out1, E_out2, E_out3, E_out4, E_out6, E_out7 = [], [], [], [], [], []
    trn_ds, tst_ds = split_train_test(csv_filepath)

    model = SVM(kernel='linear')
    # model = LogisticRegression()

    ''' UncertaintySampling (Least Confident)
     
        UncertaintySampling : it queries the instances about which 
        it is least certain how to label
        
        Least Confident : it queries the instance whose posterior 
        probability of being positive is nearest 0.5
    '''
    qs = UncertaintySampling(trn_ds, method='lc', model=LogisticRegression(C=.01))
    model.train(trn_ds)
    E_out1 = np.append(E_out1, 1 - model.score(tst_ds))

    ''' UncertaintySampling (Max Margin) 

    '''
    trn_ds2 = copy.deepcopy(trn_ds)
    qs2 = USampling(trn_ds2, method='mm', model=SVM(kernel='linear'))
    model.train(trn_ds2)
    E_out2 = np.append(E_out2, 1 - model.score(tst_ds))

    ''' CMB Sampling   
        Combination of active learning algorithms (distance-based (DIST), diversity-based (DIV)) 
    '''
    trn_ds3 = copy.deepcopy(trn_ds)
    qs3 = CMBSampling(trn_ds3, model=SVM(kernel='linear'))
    model.train(trn_ds3)
    E_out3 = np.append(E_out3, 1 - model.score(tst_ds))

    ''' Random Sampling   
        Random : it chooses randomly a query
    '''
    trn_ds4 = copy.deepcopy(trn_ds)
    qs4 = RandomSampling(trn_ds4, random_state=1126)
    model.train(trn_ds4)
    E_out4 = np.append(E_out4, 1 - model.score(tst_ds))

    ''' QueryByCommittee (Vote Entropy)
    
        QueryByCommittee : it keeps a committee of classifiers and queries 
        the instance that the committee members disagree, it  also examines 
        unlabeled examples and selects only those that are most informative 
        for labeling
        
        Vote Entropy : a way of measuring disagreement 
        
        Disadvantage : it does not consider the committee members’ class 
        distributions. It also misses some informative unlabeled examples 
        to label 
    '''
    trn_ds6 = copy.deepcopy(trn_ds)
    qs6 = QueryByCommittee(trn_ds6, disagreement='vote',
                              models=[LogisticRegression(C=1.0),
                                      LogisticRegression(C=0.01),
                                      LogisticRegression(C=100)],
                              random_state=1126)
    model.train(trn_ds6)
    E_out6 = np.append(E_out6, 1 - model.score(tst_ds))

    ''' QueryByCommittee (Kullback-Leibler Divergence)
    
            QueryByCommittee : it examines unlabeled examples and selects only 
            those that are most informative for labeling
            
            Disadvantage :  it misses some examples on which committee members 
            disagree
    '''
    trn_ds7 = copy.deepcopy(trn_ds)
    qs7 = QueryByCommittee(trn_ds7, disagreement='kl_divergence',
                                  models=[LogisticRegression(C=1.0),
                                          LogisticRegression(C=0.01),
                                          LogisticRegression(C=100)],
                                  random_state=1126)
    model.train(trn_ds7)
    E_out7 = np.append(E_out7, 1 - model.score(tst_ds))

    with sns.axes_style("darkgrid"):
        fig = plt.figure()
        ax = fig.add_subplot(1, 1, 1)

    query_num = np.arange(0, 1)
    p1, = ax.plot(query_num, E_out1, 'red')
    p2, = ax.plot(query_num, E_out2, 'blue')
    p3, = ax.plot(query_num, E_out3, 'green')
    p4, = ax.plot(query_num, E_out4, 'orange')
    p6, = ax.plot(query_num, E_out6, 'black')
    p7, = ax.plot(query_num, E_out7, 'purple')
    plt.legend(('Least Confident', 'Max Margin', 'Distance Diversity CMB', 'Random Sampling', 'Vote Entropy', 'KL Divergence'), loc=1)
    plt.ylabel('Accuracy')
    plt.xlabel('Number of Queries')
    plt.title('Active Learning - Query choice strategies')
    plt.ylim([0, 1])
    plt.show(block=False)

    for i in range(quota):
        print("\n#################################################")
        print("Query number " + str(i) + " : ")
        print("#################################################\n")
        text_file.write("\n#################################################\n")
        text_file.write("Query number %s : " % str(i))
        text_file.write("\n#################################################\n")

        ask_id = qs.make_query()
        print("\033[4mUsing Uncertainty Sampling (Least confident) :\033[0m")
        print("Tweet :" + define_tweet_by_id(ask_id), end='', flush=True)
        print("Simulating human response : " + str(simulate_human_decision(ask_id)) + " \n")
        text_file.write("Using Uncertainty Sampling (Least confident) :\n")
        text_file.write("Tweet : %s \n" % str(define_tweet_by_id(ask_id)))
        text_file.write("Simulating human response : %s \n\n" % str(simulate_human_decision(ask_id)))
        trn_ds.update(ask_id, simulate_human_decision(ask_id))
        model.train(trn_ds)
        E_out1 = np.append(E_out1, 1 - model.score(tst_ds))

        ask_id = qs2.make_query()
        print("\033[4mUsing Uncertainty Sampling (Max Margin) :\033[0m")
        print("Tweet :" + define_tweet_by_id(ask_id), end='', flush=True)
        print("Simulating human response : " + str(simulate_human_decision(ask_id)) + " \n")
        text_file.write("Using Uncertainty Sampling (Smallest Margin) :\n")
        text_file.write("Tweet : %s \n" % str(define_tweet_by_id(ask_id)))
        text_file.write("Simulating human response : %s \n\n" % str(simulate_human_decision(ask_id)))
        trn_ds2.update(ask_id, simulate_human_decision(ask_id))
        model.train(trn_ds2)
        E_out2 = np.append(E_out2, 1 - model.score(tst_ds))

        ask_id = qs3.make_query()
        print("\033[4mUsing CMB Distance-Diversity Sampling :\033[0m")
        print("Tweet :" + define_tweet_by_id(ask_id), end='', flush=True)
        print("Simulating human response : " + str(simulate_human_decision(ask_id)) + " \n")
        text_file.write("Using Uncertainty Sampling (Entropy) :\n")
        text_file.write("Tweet : %s \n" % str(define_tweet_by_id(ask_id)))
        text_file.write("Simulating human response : %s \n\n" % str(simulate_human_decision(ask_id)))
        trn_ds3.update(ask_id, simulate_human_decision(ask_id))
        model.train(trn_ds3)
        E_out3 = np.append(E_out3, 1 - model.score(tst_ds))

        ask_id = qs4.make_query()
        print("\033[4mUsing Random Sampling :\033[0m")
        print("Tweet :" + define_tweet_by_id(ask_id), end='', flush=True)
        print("Simulating human response : " + str(simulate_human_decision(ask_id)) + " \n")
        text_file.write("Using Random Sampling :\n")
        text_file.write("Tweet : %s \n" % str(define_tweet_by_id(ask_id)))
        text_file.write("Simulating human response : %s \n\n" % str(simulate_human_decision(ask_id)))
        trn_ds4.update(ask_id, simulate_human_decision(ask_id))
        model.train(trn_ds4)
        E_out4 = np.append(E_out4, 1 - model.score(tst_ds))

        ask_id = qs6.make_query()
        print("\033[4mUsing QueryByCommittee (Vote Entropy) :\033[0m")
        print("Tweet :" + define_tweet_by_id(ask_id), end='', flush=True)
        print("Simulating human response : " + str(simulate_human_decision(ask_id)) + " \n")
        text_file.write("Using QueryByCommittee (Vote Entropy) :\n")
        text_file.write("Tweet : %s \n" % str(define_tweet_by_id(ask_id)))
        text_file.write("Simulating human response : %s \n\n" % str(simulate_human_decision(ask_id)))
        trn_ds6.update(ask_id, simulate_human_decision(ask_id))
        model.train(trn_ds6)
        E_out6 = np.append(E_out6, 1 - model.score(tst_ds))

        ask_id = qs7.make_query()
        print("\033[4mUsing QueryByCommittee (KL Divergence) :\033[0m")
        print("Tweet :" + define_tweet_by_id(ask_id), end='', flush=True)
        print("Simulating human response : " + str(simulate_human_decision(ask_id)) + " \n")
        text_file.write("Using QueryByCommittee (KL Divergence) :\n")
        text_file.write("Tweet : %s \n" % str(define_tweet_by_id(ask_id)))
        text_file.write("Simulating human response : %s \n\n" % str(simulate_human_decision(ask_id)))
        trn_ds7.update(ask_id, simulate_human_decision(ask_id))
        model.train(trn_ds7)
        E_out7 = np.append(E_out7, 1 - model.score(tst_ds))

        ax.set_xlim((0, i + 1))
        ax.set_ylim((0, max(max(E_out1), max(E_out2), max(E_out3), max(E_out4), max(E_out6), max(E_out7)) + 0.2))
        query_num = np.arange(0, i + 2)
        p1.set_xdata(query_num)
        p1.set_ydata(E_out1)
        p2.set_xdata(query_num)
        p2.set_ydata(E_out2)
        p3.set_xdata(query_num)
        p3.set_ydata(E_out3)
        p4.set_xdata(query_num)
        p4.set_ydata(E_out4)
        p6.set_xdata(query_num)
        p6.set_ydata(E_out6)
        p7.set_xdata(query_num)
        p7.set_ydata(E_out7)

        plt.draw()

    t2 = time.time()
    time_total = t2 - t0
    print("\n\n\n#################################################\n")
    print("Execution time : %fs \n\n" % time_total)
    text_file.write("\n\n\n#################################################\n")
    text_file.write("Execution time : %fs \n" % time_total)
    text_file.close()
    input("Press any key to save the plot...")
    plt.savefig('task_' + str(timestr) + '.png')

    print("Done")
예제 #3
0
def main():
    quota = 10  # ask human to label 10 samples
    n_classes = 5
    E_out1, E_out2 = [], []

    trn_ds, tst_ds, ds = split_train_test(n_classes)
    trn_ds2 = copy.deepcopy(trn_ds)
    # print(trn_ds.get_entries())
    # print(len(trn_ds))
    qs = UncertaintySampling(trn_ds, method='lc', model=LogisticRegression())
    qs2 = RandomSampling(trn_ds2)

    model = LogisticRegression()

    fig = plt.figure()
    ax = fig.add_subplot(2, 1, 1)
    ax.set_xlabel('Number of Queries')
    ax.set_ylabel('Error')

    model.train(trn_ds)
    E_out1 = np.append(E_out1, 1 - model.score(tst_ds))
    model.train(trn_ds2)
    E_out2 = np.append(E_out2, 1 - model.score(tst_ds))

    query_num = np.arange(0, 1)
    p1, = ax.plot(query_num, E_out1, 'g', label='qs Eout')
    p2, = ax.plot(query_num, E_out2, 'k', label='random Eout')
    plt.legend(loc='upper center',
               bbox_to_anchor=(0.5, -0.05),
               fancybox=True,
               shadow=True,
               ncol=5)
    plt.show(block=False)

    img_ax = fig.add_subplot(2, 1, 2)
    box = img_ax.get_position()
    img_ax.set_position(
        [box.x0, box.y0 - box.height * 0.1, box.width, box.height * 0.9])
    # Give each label its name (labels are from 0 to n_classes-1)
    lbr = InteractiveLabeler(label_name=[str(lbl) for lbl in range(n_classes)])

    for i in range(quota):
        ask_id = qs.make_query()
        print("asking sample from Uncertainty Sampling")
        # reshape the image to its width and height
        lb = lbr.label(trn_ds.data[ask_id][0].reshape(8, 8))
        trn_ds.update(ask_id, lb)
        model.train(trn_ds)
        E_out1 = np.append(E_out1, 1 - model.score(tst_ds))

        ask_id = qs2.make_query()
        print("asking sample from Random Sample")
        lb = lbr.label(trn_ds2.data[ask_id][0].reshape(8, 8))
        trn_ds2.update(ask_id, lb)
        model.train(trn_ds2)
        E_out2 = np.append(E_out2, 1 - model.score(tst_ds))

        ax.set_xlim((0, i + 1))
        ax.set_ylim((0, max(max(E_out1), max(E_out2)) + 0.2))
        query_num = np.arange(0, i + 2)
        p1.set_xdata(query_num)
        p1.set_ydata(E_out1)
        p2.set_xdata(query_num)
        p2.set_ydata(E_out2)

        plt.draw()

    input("Press any key to continue...")
예제 #4
0
def run_featureselection(trn_dss,
                         tst_ds,
                         y_train,
                         model,
                         method_,
                         qs,
                         X_test,
                         y_test,
                         all_cols,
                         save_name,
                         save,
                         type_,
                         part=20):
    """
    Batch active learning algorithm with feature selection
    """
    E_in, E_out = [], []
    f1score = []
    features_ls = []
    label_holder, asked_id = [], []
    tn, fp, fn, tp = [], [], [], []

    k = trn_dss.len_labeled()
    k_beg = trn_dss.len_labeled()
    quota = len(trn_dss.data)
    iter_ = 0

    while (k < quota):
        clear_output(wait=True)

        # Standard usage of libact objects
        # make_query returns the index of the sample that the active learning algorithm would like to query
        lbls, asks = [], []

        if (part < trn_dss.len_unlabeled()):
            part1 = part
        else:
            part1 = trn_dss.len_unlabeled()

        # -------------------> Feature Selection
        # select features with feature selection
        X_train_feature = [i[0] for i in trn_dss.get_labeled_entries()]
        y_train_feature = [i[1] for i in trn_dss.get_labeled_entries()]
        col_index, features_f = feature_selection(X_train_feature,
                                                  y_train_feature,
                                                  all_cols,
                                                  f_class=True)

        features_ls.append(features_f)

        # update the X_train dataset and y_train with the current selection of variables
        X_train_updated = [i[0][col_index] for i in trn_dss.data]
        y_train_updated = [i[1] for i in trn_dss.data]
        trn_dss_updated = Dataset(X_train_updated, y_train_updated)

        # update X_test
        X_test_feature = [i[col_index] for i in X_test]

        if (type_ == 'random'):
            qs = RandomSampling(trn_dss_updated, method=method_, model=model)
            model1 = model
        elif (type_ == 'unc'):
            qs = UncertaintySampling(trn_dss_updated,
                                     method=method_,
                                     model=model)
            model1 = model
        elif (type_ == 'qbc'):
            qs = QueryByCommittee(trn_dss_updated, models=model)
            model1 = method_
        elif (type_ == 'dens'):
            qs = DWUS(trn_dss_updated, model=model)
            model1 = model

        for i in range(0, part1):
            # ask id only asks for particular id, not all, everytime
            ask_id = qs.make_query()
            asks.append(ask_id)
            # lbl label returns the label of a given sample
            lb = y_train[ask_id]
            lbls.append(lb)
            # update updates the unlabeled sample with queried sample
            trn_dss.update(ask_id, lb)
            trn_dss_updated.update(ask_id, lb)

        label_holder.append(lbls)
        asked_id.append(asks)

        # trains only on the labeled examples and chosen values
        model1.train(trn_dss_updated)
        # predict it
        pred_y = model1.predict(X_test_feature)

        # save the results
        f1score.append(f1_score(y_test, pred_y))
        tn.append(confusion_matrix(y_test, pred_y)[0][0])
        fp.append(confusion_matrix(y_test, pred_y)[0][1])
        fn.append(confusion_matrix(y_test, pred_y)[1][0])
        tp.append(confusion_matrix(y_test, pred_y)[1][1])

        # score returns the mean accuracy of the results
        #E_in = np.append(E_in, 1 - model.score(trn_dss)) #train
        #E_out = np.append(E_out, 1 - model.score(tst_ds)) #test

        k = trn_dss_updated.len_labeled()
        print(k)
        print(quota)
        print('iteration:', iter_)
        print(len(f1score))
        print('train dataset labeled:', trn_dss.len_labeled())
        print('train dataset shape:', trn_dss.format_sklearn()[0].shape)
        print('train dataset sum:', trn_dss.format_sklearn()[1].sum())
        print('Current f1 score:', f1_score(y_test, pred_y))
        print('Current progress:', np.round(k / quota * 100, 2), '%')
        print('Chosen_features:', features_f)

        # number of iterations
        iter_ = iter_ + 1

    q = [i for i in range(k_beg, quota, part)]
    iter_ = [i for i in range(0, len(f1score))]

    if (save == True):
        #q= [i for i in range(k_beg,quota,part)]
        #iter_=[i for i in range(0,len(f1score))]
        saved_file = pd.DataFrame({
            'iter': iter_,
            'quota': q,
            'f1_score': f1score,
            'tn': tn,
            'fp': fp,
            'fn': fn,
            'tp': tp,
            'id_index': asked_id,
            'label': label_holder,
            'features': features_ls
        })
        saved_file.to_csv(save_name)

    return q, iter_, f1score, tn, fp, fn, tp, k, trn_dss.data, label_holder, asked_id, features_ls