예제 #1
0
        args.pred) + '_refer.actions'
    fwRefer = open(REFER_PATH, 'w', encoding="UTF-8")

    phrase_pairs, emb_dict = [], list()
    TEST_QUESTION_PATH = '../data/auto_QA_data/nomask_test/' + str(
        args.pred).upper() + '_test.question'
    log.info(
        "Open: %s", '../data/auto_QA_data/nomask_test/' +
        str(args.pred).upper() + '_test.question')
    TEST_ACTION_PATH = '../data/auto_QA_data/nomask_test/' + str(
        args.pred).upper() + '_test.action'
    log.info(
        "Open: %s", '../data/auto_QA_data/nomask_test/' +
        str(args.pred).upper() + '_test.action')
    if args.pred == 'pt' or 'final' in args.pred:
        phrase_pairs, emb_dict = data.load_data_from_existing_data(
            TEST_QUESTION_PATH, TEST_ACTION_PATH, DIC_PATH)
    elif args.pred == 'rl':
        phrase_pairs, emb_dict = data.load_RL_data(TEST_QUESTION_PATH,
                                                   TEST_ACTION_PATH, DIC_PATH)
    log.info("Obtained %d phrase pairs with %d uniq words", len(phrase_pairs),
             len(emb_dict))
    train_data = data.encode_phrase_pairs(phrase_pairs, emb_dict)
    if args.pred == 'rl':
        train_data = data.group_train_data(train_data)
    else:
        train_data = data.group_train_data_one_to_one(train_data)
    rev_emb_dict = {idx: word for word, idx in emb_dict.items()}

    net = model.PhraseModel(emb_size=model.EMBEDDING_DIM,
                            dict_size=len(emb_dict),
                            hid_size=model.HIDDEN_STATE_SIZE)
예제 #2
0
    parser = argparse.ArgumentParser()
    # parser.add_argument("--data", required=True, help="Category to use for training. "
    #                                                   "Empty string to train on full processDataset")
    parser.add_argument("--cuda", action='store_true', default=False,
                        help="Enable cuda")
    parser.add_argument("-n", "--name", required=True, help="Name of the run")
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")
    log.info("Device info: %s", str(device))

    saves_path = os.path.join(SAVES_DIR, args.name)
    os.makedirs(saves_path, exist_ok=True)

    # 得到配对的input-output pair和对应的词汇表(词汇表放在一起),这里可以换成自己的pair和词典!
    # phrase_pairs, emb_dict = data.load_data(genre_filter=args.data)
    phrase_pairs, emb_dict = data.load_data_from_existing_data(TRAIN_QUESTION_PATH, TRAIN_ACTION_PATH, DIC_PATH, MAX_TOKENS)
    # Index -> word.
    rev_emb_dict = {idx: word for word, idx in emb_dict.items()}
    log.info("Obtained %d phrase pairs with %d uniq words",
             len(phrase_pairs), len(emb_dict))
    data.save_emb_dict(saves_path, emb_dict)
    end_token = emb_dict[data.END_TOKEN]
    # 将tokens转换为emb_dict中的indices;
    train_data = data.encode_phrase_pairs(phrase_pairs, emb_dict)
    rand = np.random.RandomState(data.SHUFFLE_SEED)
    rand.shuffle(train_data)
    log.info("Training data converted, got %d samples", len(train_data))
    train_data, test_data = data.split_train_test(train_data)
    log.info("Train set has %d phrases, test %d", len(train_data), len(test_data))

    net = attention_model.PhraseModel(emb_size=attention_model.EMBEDDING_DIM, dict_size=len(emb_dict),
예제 #3
0
    device = torch.device("cuda" if args.cuda else "cpu")
    log.info("Device info: %s", str(device))

    saves_path = os.path.join(SAVES_DIR, args.name)
    isExists = os.path.exists(saves_path)
    if not isExists:
        os.makedirs(saves_path)

    # saves_path = os.path.join(SAVES_DIR, args.name)
    # os.makedirs(saves_path, exist_ok=True)

    # To get the input-output pairs and the relevant dictionary.
    if not args.int:
        log.info("Training model without INT mask information...")
        if args.dataset == "csqa":
            phrase_pairs, emb_dict = data.load_data_from_existing_data(
                TRAIN_QUESTION_PATH, TRAIN_ACTION_PATH, DIC_PATH, MAX_TOKENS)
        else:
            phrase_pairs, emb_dict = data.load_data_from_existing_data(
                TRAIN_QUESTION_PATH_WEBQSP, TRAIN_ACTION_PATH_WEBQSP,
                DIC_PATH_WEBQSP, MAX_TOKENS)

    if args.int:
        log.info("Training model with INT mask information...")
        if args.dataset == "csqa":
            phrase_pairs, emb_dict = data.load_data_from_existing_data(
                TRAIN_QUESTION_PATH_INT, TRAIN_ACTION_PATH_INT, DIC_PATH_INT,
                MAX_TOKENS_INT)
        else:
            phrase_pairs, emb_dict = data.load_data_from_existing_data(
                TRAIN_QUESTION_PATH_INT_WEBQSP, TRAIN_ACTION_PATH_INT_WEBQSP,
                DIC_PATH_INT_WEBQSP, MAX_TOKENS_INT)