class Context: """ Context is the main entry point of the LiberTEM API. It contains methods for loading datasets, creating analyses on them and running them. """ def __init__(self, executor: JobExecutor = None): """ Create a new context. In the background, this creates a suitable executor and spins up a local Dask cluster. Parameters ---------- executor : ~libertem.executor.base.JobExecutor or None If None, create a :class:`~libertem.executor.dask.DaskJobExecutor` that uses all cores on the local system. Examples -------- >>> ctx = libertem.api.Context() >>> # Create a Context using an inline executor for debugging >>> from libertem.executor.inline import InlineJobExecutor >>> debug_ctx = libertem.api.Context(executor=InlineJobExecutor()) """ if executor is None: executor = self._create_local_executor() self.executor = executor def load(self, filetype: str, *args, **kwargs) -> DataSet: """ Load a `DataSet`. As it doesn't load the whole data into RAM at once, you can load and process datasets that are bigger than your available RAM. Using fast storage (i.e. SSD) is advisable. .. versionchanged:: 0.5.0.dev0 Added support for filetype="auto" Parameters ---------- filetype : str one of: %(types)s or auto to automatically determine filetype and parameters args passed on to the DataSet implementation kwargs passed on to the DataSet implementation Returns ------- DataSet : libertem.io.dataset.base.DataSet The loaded dataset Note ---- Additional parameters are passed to the concrete :class:`~libertem.io.dataset.base.DataSet` implementation. Note ---- See :ref:`dataset api` for format-specific documentation. """ # delegate to libertem.io.dataset.load: return load(filetype, executor=self.executor, *args, **kwargs) load.__doc__ = load.__doc__ % {"types": ", ".join(filetypes.keys())} def create_mask_job(self, factories: MaskFactoriesType, dataset: DataSet, use_sparse: bool = None, mask_count: int = None, mask_dtype: np.ndarray = None, dtype: np.ndarray = None) -> ApplyMasksJob: """ Create a low-level mask application job. Each factory function should, when called, return a numpy array with the same shape as frames in the dataset (so dataset.shape.sig). .. deprecated:: 0.4.0 Use :meth:`create_mask_analysis` or :class:`~libertem.udf.masks.ApplyMasksUDF`. See also :ref:`job deprecation`. Parameters ---------- factories : Union[Callable[[], array_like], Iterable[Callable[[], array_like]]] Function or list of functions that take no arguments and create masks. The returned masks can be numpy arrays, scipy.sparse or sparse https://sparse.pydata.org/ matrices. The mask factories should not reference large objects because they can create significant overheads when they are pickled and unpickled. dataset : libertem.io.dataset.base.DataSet dataset to work on use_sparse : bool or None * None (default): Use sparse matrix multiplication if all factory functions return a \ sparse mask, otherwise convert all masks to dense matrices and use dense matrix \ multiplication * True: Convert all masks to sparse matrices. * False: Convert all masks to dense matrices. mask_count : int, optional Specify the number of masks if a single factory function is used so that the number of masks can be determined without calling the factory function. mask_dtype : numpy.dtype, optional Specify the dtype of the masks so that mask dtype can be determined without calling the mask factory functions. This can be used to override the mask dtype in the result dtype determination. As an example, setting this to np.float32 means that masks of type float64 will not switch the calculation and result dtype to float64 or complex128. dtype : numpy.dtype, optional Specify the dtype to do the calculation in. Integer dtypes are possible if the numpy casting rules allow this for source and mask data. Returns ------- ApplyMasksJob : libertem.job.base.Job When run by the Context, this Job creates a :class:`numpy.ndarray` of shape (n_masks, prod(ds.shape.nav)) Examples -------- >>> # Use intermediate variables instead of referencing >>> # large complex objects like a dataset within the >>> # factory function >>> shape = dataset.shape.sig >>> job = ctx.create_mask_job( ... factories=[lambda: np.ones(shape)], ... dataset=dataset ... ) >>> result = ctx.run(job) """ warnings.warn( "The Job API is deprecated and will be removed after version 0.6.0. " "Use Context.create_mask_analysis() or libertem.udf.masks.ApplyMasksUDF instead. " "See " "https://libertem.github.io/LiberTEM/changelog.html#job-deprecation " "for details and a migration guide.", FutureWarning) return ApplyMasksJob( dataset=dataset, mask_factories=factories, use_sparse=use_sparse, mask_count=mask_count, mask_dtype=mask_dtype, dtype=dtype, ) def create_mask_analysis(self, factories: MaskFactoriesType, dataset: DataSet, use_sparse: bool = None, mask_count: int = None, mask_dtype: np.dtype = None, dtype: np.dtype = None) -> MasksAnalysis: """ Create a mask application analysis. Each factory function should, when called, return a numpy array with the same shape as frames in the dataset (so dataset.shape.sig). This is a more high-level interface than :class:`~libertem.udf.masks.ApplyMasksUDF` and differs in the way the result is returned. With :class:`~libertem.udf.masks.ApplyMasksUDF`, it is a single numpy array, here we split it up for each mask we apply, make some default visualization available etc. Parameters ---------- factories : Union[Callable[[], array_like], Iterable[Callable[[], array_like]]] Function or list of functions that take no arguments and create masks. The returned masks can be numpy arrays, scipy.sparse or sparse https://sparse.pydata.org/ matrices. The mask factories should not reference large objects because they can create significant overheads when they are pickled and unpickled. If a single function is specified, the first dimension is interpreted as the mask index. dataset : libertem.io.dataset.base.DataSet dataset to work on use_sparse : bool or None * None (default): Use sparse matrix multiplication if all factory functions return a \ sparse mask, otherwise convert all masks to dense matrices and use dense matrix \ multiplication * True: Convert all masks to sparse matrices. * False: Convert all masks to dense matrices. mask_count : int, optional Specify the number of masks if a single factory function is used so that the number of masks can be determined without calling the factory function. mask_dtype : numpy.dtype, optional Specify the dtype of the masks so that mask dtype can be determined without calling the mask factory functions. This can be used to override the mask dtype in the result dtype determination. As an example, setting this to np.float32 means that masks of type float64 will not switch the calculation and result dtype to float64 or complex128. dtype : numpy.dtype, optional Specify the dtype to do the calculation in. Integer dtypes are possible if the numpy casting rules allow this for source and mask data. Returns ------- MasksAnalysis : libertem.analysis.base.Analysis When run by the Context, this Analysis generates a :class:`libertem.analysis.masks.MasksResultSet`. Examples -------- >>> # Use intermediate variables instead of referencing >>> # large complex objects like a dataset within the >>> # factory function >>> shape = dataset.shape.sig >>> analysis = ctx.create_mask_analysis( ... factories=[lambda: np.ones(shape)], ... dataset=dataset ... ) >>> result = ctx.run(analysis) >>> result.mask_0.raw_data.shape (16, 16) """ return MasksAnalysis( dataset=dataset, parameters={ "factories": factories, "use_sparse": use_sparse, "mask_count": mask_count, "mask_dtype": mask_dtype, "dtype": dtype }, ) def create_com_analysis(self, dataset: DataSet, cx: int = None, cy: int = None, mask_radius: int = None) -> COMAnalysis: """ Create a center-of-mass (first moment) analysis, possibly masked. Parameters ---------- dataset the dataset to work on cx reference center x value cy reference center y value mask_radius mask out intensity outside of mask_radius from (cy, cx) Returns ------- COMAnalysis : libertem.analysis.base.Analysis When run by the Context, this Analysis generates a :class:`libertem.analysis.com.COMResultSet`. """ if dataset.shape.nav.dims != 2: raise ValueError( "incompatible dataset: need two navigation dimensions") if dataset.shape.sig.dims != 2: raise ValueError( "incompatible dataset: need two signal dimensions") loc = locals() parameters = { name: loc[name] for name in ['cx', 'cy'] if loc[name] is not None } if mask_radius is not None: parameters['r'] = mask_radius analysis = COMAnalysis(dataset=dataset, parameters=parameters) return analysis def create_radial_fourier_analysis( self, dataset: DataSet, cx: float = None, cy: float = None, ri: float = None, ro: float = None, n_bins: int = None, max_order: int = None, use_sparse: bool = None) -> RadialFourierAnalysis: """ Create an Analysis that calculates the Fourier transform of rings around the center. See :ref:`radialfourier app` for details on the method! Parameters ---------- dataset the dataset to work on cx center x value cy center y value ri inner radius ro outer radius n_bins number of bins max_order maximum order of calculated Fourier component Returns ------- RadialFourierAnalysis : libertem.analysis.base.Analysis When run by the Context, this Analysis generates a :class:`libertem.analysis.radialfourier.RadialFourierResultSet`. """ if dataset.shape.sig.dims != 2: raise ValueError( "incompatible dataset: need two signal dimensions") loc = locals() parameters = { name: loc[name] for name in ['cx', 'cy', 'ri', 'ro', 'n_bins', 'max_order', 'use_sparse'] if loc[name] is not None } analysis = RadialFourierAnalysis(dataset=dataset, parameters=parameters) return analysis def create_disk_analysis(self, dataset: DataSet, cx: int = None, cy: int = None, r: int = None) -> DiskMaskAnalysis: """ Create an Analysis that integrates over a disk (i.e. filled circle). Parameters ---------- dataset the dataset to work on cx center x value cy center y value r radius of the disk Returns ------- DiskMaskAnalysis : libertem.analysis.base.Analysis When run by the Context, this Analysis generates a :class:`libertem.analysis.masks.SingleMaskResultSet`. """ if dataset.shape.sig.dims != 2: raise ValueError( "incompatible dataset: need two signal dimensions") loc = locals() parameters = { name: loc[name] for name in ['cx', 'cy', 'r'] if loc[name] is not None } return DiskMaskAnalysis(dataset=dataset, parameters=parameters) def create_ring_analysis(self, dataset: DataSet, cx: int = None, cy: int = None, ri: int = None, ro: int = None) -> RingMaskAnalysis: """ Create an Analysis that integrates over a ring. Parameters ---------- dataset the dataset to work on cx center x value cy center y value ri inner radius ro outer radius Returns ------- RingMaskAnalysis : libertem.analysis.base.Analysis When run by the Context, this Analysis generates a :class:`libertem.analysis.masks.SingleMaskResultSet`. """ if dataset.shape.sig.dims != 2: raise ValueError( "incompatible dataset: need two signal dimensions") loc = locals() parameters = { name: loc[name] for name in ['cx', 'cy', 'ri', 'ro'] if loc[name] is not None } return RingMaskAnalysis(dataset=dataset, parameters=parameters) def create_point_analysis(self, dataset: DataSet, x: int = None, y: int = None) -> PointMaskAnalysis: """ Create an Analysis that selects the pixel with coords (y, x) from each frame Returns ------- PointMaskAnalysis : libertem.analysis.base.Analysis When run by the Context, this Analysis generates a :class:`libertem.analysis.masks.SingleMaskResultSet`. """ if dataset.shape.nav.dims > 2: raise ValueError( "incompatible dataset: need at most two navigation dimensions") parameters = { 'cx': x, 'cy': y, } parameters = {k: v for k, v in parameters.items() if v is not None} return PointMaskAnalysis(dataset=dataset, parameters=parameters) def create_sum_analysis(self, dataset) -> SumAnalysis: """ Create an Analysis that sums all signal elements along the navigation dimension, preserving the signal dimension. Parameters ---------- dataset the dataset to work on Returns ------- SumAnalysis : libertem.analysis.base.Analysis When run by the Context, this Analysis generates a :class:`libertem.analysis.sum.SumResultSet`. """ return SumAnalysis(dataset=dataset, parameters={}) def create_pick_job(self, dataset: DataSet, origin: Tuple[int], shape: Tuple[int] = None) -> PickFrameJob: """ Create a job that picks raw data from `origin` with the size defined in `shape`. Note ---- If you just want to read single frames, it is easier to use :meth:`create_pick_analysis`. Note ---- It is not efficient to use this method on large parts of datasets, please consider implementing a UDF instead. .. deprecated:: 0.4.0 Use :meth:`libertem.api.Context.create_pick_analysis`, :class:`libertem.udf.raw.PickUDF`, :class:`libertem.udf.masks.ApplyMasksUDF` or a custom UDF (:ref:`user-defined functions`) as a replacement. See also :ref:`job deprecation`. Parameters ---------- dataset The dataset to work on origin Where to start reading. You can either specify all dimensions, or only nav dimensions, in which case the signal is read starting from (0, ..., 0). shape The shape of the data to read. If None, read a "frame" or single signal element Returns ------- PickFrameJob : libertem.job.base.Job A job that returns the specified raw data as :class:`numpy.ndarray` Examples -------- >>> dataset = ctx.load( ... filetype="memory", ... data=np.zeros([16, 16, 16, 16, 16], dtype=np.float32), ... sig_dims=2 ... ) >>> origin = (7, 8, 9) >>> job = ctx.create_pick_job(dataset=dataset, origin=origin) >>> result = ctx.run(job) >>> assert result.shape == tuple(dataset.shape.sig) """ warnings.warn( "The Job API is deprecated and will be removed after version 0.6.0. " "Use Context.create_pick_analysis, libertem.udf.raw.PickUDF, " "libertem.udf.masks.ApplyMasksUDF or a custom UDF as a replacement. " "See " "https://libertem.github.io/LiberTEM/changelog.html#job-deprecation " "for details and a migration guide.", FutureWarning) # FIXME: this method works well if we can flatten to 3D # need vectorized I/O for general case if len(origin) == dataset.shape.nav.dims: origin = (np.ravel_multi_index(origin, dataset.shape.nav),)\ + tuple([0] * dataset.shape.sig.dims) elif len(origin) == dataset.shape.sig.dims + 1: pass # keep as-is elif len(origin) == 1: origin = origin + tuple([0] * dataset.shape.sig.dims) else: raise ValueError( "incompatible origin: can only read in flattened form") if shape is None: shape = (1, ) + tuple(dataset.shape.sig) else: if len(shape) != dataset.shape.flatten_nav().dims: raise ValueError( "incompatible: shape needs to match the dataset shape") shape = Shape(shape, sig_dims=dataset.shape.sig.dims).flatten_nav() slice_ = Slice(origin=origin, shape=Shape(shape, sig_dims=dataset.shape.sig.dims)) return PickFrameJob( dataset=dataset, slice_=slice_, squeeze=True, ) def create_pick_analysis(self, dataset: DataSet, x: int, y: int = None, z: int = None) -> PickFrameAnalysis: """ Create an Analysis that picks a single frame / signal element from (z, y, x). The number of parameters must match number of navigation dimensions in the dataset, for example if you have a 4D dataset with two signal dimensions and two navigation dimensions, you need to specify x and y. Parameters ---------- dataset The dataset to work on x x coordinate y y coordinate z z coordinate Returns ------- PickFrameAnalysis : libertem.analysis.base.Analysis When run by the Context, this Analysis generates a :class:`libertem.analysis.raw.PickResultSet`. Examples -------- >>> dataset = ctx.load( ... filetype="memory", ... data=np.zeros([16, 16, 16, 16, 16], dtype=np.float32), ... sig_dims=2 ... ) >>> analysis = ctx.create_pick_analysis(dataset=dataset, x=9, y=8, z=7) >>> result = ctx.run(analysis) >>> assert result.intensity.raw_data.shape == tuple(dataset.shape.sig) """ loc = locals() parameters = { name: loc[name] for name in ['x', 'y', 'z'] if loc[name] is not None } return PickFrameAnalysis(dataset=dataset, parameters=parameters) def run(self, job: Union[Job, Analysis], roi: np.ndarray = None, progress: bool = False) -> Union[np.ndarray, AnalysisResultSet]: """ Run the given :class:`~libertem.job.base.Job` or :class:`~libertem.analysis.base.Analysis` and return the result data. Parameters ---------- job the job or analysis to run roi : numpy.ndarray, optional Boolean mask of the navigation dimension. This is curently not supported for all Analysis types and may raise a :class:`TypeError` in that case. progress : bool Show progress bar Returns ------- result : numpy.ndarray or libertem.analysis.base.AnalysisResultSet Running a Job returns a :class:`numpy.ndarray`, running an Analysis returns a :class:`libertem.analysis.base.AnalysisResultSet`. See the matching :code:`create_*_analysis` function for documentation of the specific AnalysisResultSet subclass or :class:`numpy.ndarray` that is being returned. """ # FIXME remove job support after deprecation period analysis = None if hasattr(job, "get_job") or (hasattr(job, "get_udf") and hasattr(job, "get_roi")): analysis = job if analysis.TYPE == 'JOB': job_to_run = analysis.get_job() else: if roi is None: roi = analysis.get_roi() udf_results = self.run_udf(dataset=analysis.dataset, udf=analysis.get_udf(), roi=roi, progress=progress) return analysis.get_udf_results(udf_results, roi) else: job_to_run = job if roi is not None: raise TypeError("old-style analyses don't support ROIs") out = job_to_run.get_result_buffer() for tiles in self.executor.run_job(job_to_run): for tile in tiles: tile.reduce_into_result(out) if analysis is not None: return analysis.get_results(out) return out def run_udf(self, dataset: DataSet, udf: UDF, roi: np.ndarray = None, progress: bool = False) -> Dict[str, BufferWrapper]: """ Run `udf` on `dataset`. Parameters ---------- dataset The dataset to work on udf UDF instance you want to run roi : numpy.ndarray Region of interest as bool mask over the navigation axes of the dataset progress : bool Show progress bar Returns ------- dict Return value of the UDF containing the result buffers of type :class:`libertem.common.buffers.BufferWrapper`. Note that a :class:`~libertem.common.buffers.BufferWrapper` can be used like a :class:`numpy.ndarray` in many cases because it implements :meth:`__array__`. You can access the underlying numpy array using the :attr:`~libertem.common.buffers.BufferWrapper.data` property. .. versionchanged:: 0.5.0.dev0 Added the progress parameter """ return UDFRunner(udf).run_for_dataset(dataset, self.executor, roi, progress=progress) def map(self, dataset: DataSet, f, roi: np.ndarray = None, progress: bool = False) -> BufferWrapper: ''' Create an :class:`AutoUDF` with function :meth:`f` and run it on :code:`dataset` Parameters ---------- dataset: The dataset to work on f: Function that accepts a frame as the only parameter. It should return a strongly reduced output compared to the size of a frame. roi : numpy.ndarray region of interest as bool mask over the navigation axes of the dataset progress : bool Show progress bar Returns ------- BufferWrapper : libertem.common.buffers.BufferWrapper The result of the UDF. Access the underlying numpy array using the :attr:`~libertem.common.buffers.BufferWrapper.data` property. Shape and dtype is inferred automatically from :code:`f`. ''' udf = AutoUDF(f=f) results = self.run_udf(dataset=dataset, udf=udf, roi=roi, progress=progress) return results['result'] def _create_local_executor(self): cores = psutil.cpu_count(logical=False) if cores is None: cores = 2 return DaskJobExecutor.make_local(cluster_kwargs={ "threads_per_worker": 1, "n_workers": cores }) def close(self): self.executor.close() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close()
class Context: """ Context is the main entry point of the LiberTEM API. It contains methods for loading datasets, creating jobs on them and running them. """ def __init__(self, executor=None): """ Create a new context. In the background, this creates a suitable executor and spins up a local Dask cluster. """ if executor is None: executor = self._create_local_executor() self.executor = executor def load(self, filetype: str, *args, **kwargs) -> DataSet: """ Load a `DataSet`. As it doesn't load the whole data into RAM at once, you can load and process datasets that are bigger than your available RAM. Using fast storage (i.e. SSD) is advisable. Parameters ---------- filetype : str one of: %(types)s args passed on to the DataSet implementation kwargs passed on to the DataSet implementation Returns ------- DataSet the loaded dataset Note ---- Additional parameters are passed to the concrete DataSet implementation """ # delegate to libertem.io.dataset.load: ds = self.executor.run_function(load, filetype, *args, **kwargs) ds = self.executor.run_function(ds.initialize) ds.set_num_cores(len(self.executor.get_available_workers())) self.executor.run_function(ds.check_valid) return ds load.__doc__ = load.__doc__ % {"types": ", ".join(filetypes.keys())} def create_mask_job(self, factories, dataset, use_sparse=None, mask_count=None, mask_dtype=None, dtype=None): """ Create a low-level mask application job. Each factory function should, when called, return a numpy array with the same shape as frames in the dataset (so dataset.shape.sig). Parameters ---------- factories Function or list of functions that take no arguments and create masks. The returned masks can be numpy arrays, scipy.sparse or sparse https://sparse.pydata.org/ matrices. The mask factories should not reference large objects because they can create significant overheads when they are pickled and unpickled. dataset dataset to work on use_sparse * None (default): Use sparse matrix multiplication if all factory functions return a \ sparse mask, otherwise convert all masks to dense matrices and use dense matrix \ multiplication * True: Convert all masks to sparse matrices. * False: Convert all masks to dense matrices. mask_count (optional) Specify the number of masks if a single factory function is used so that the number of masks can be determined without calling the factory function. mask_dtype (optional) Specify the dtype of the masks so that mask dtype can be determined without calling the mask factory functions. This can be used to override the mask dtype in the result dtype determination. As an example, setting this to np.float32 means that masks of type float64 will not switch the calculation and result dtype to float64 or complex128. dtype (optional) Specify the dtype to do the calculation in. Integer dtypes are possible if the numpy casting rules allow this for source and mask data. Examples -------- >>> # Use intermediate variables instead of referencing >>> # large complex objects like a dataset within the >>> # factory function >>> shape = dataset.shape.sig >>> job = ctx.create_mask_job( ... factories=[lambda: np.ones(shape)], ... dataset=dataset ... ) >>> result = ctx.run(job) """ return ApplyMasksJob( dataset=dataset, mask_factories=factories, use_sparse=use_sparse, mask_count=mask_count, mask_dtype=mask_dtype, dtype=dtype, ) def create_mask_analysis(self, factories, dataset, use_sparse=None, mask_count=None, mask_dtype=None, dtype=None): """ Create a mask application analysis. Each factory function should, when called, return a numpy array with the same shape as frames in the dataset (so dataset.shape.sig). This is a more high-level method than `create_mask_job` and differs in the way the result is returned. With `create_mask_job`, it is a single numpy array, here we split it up for each mask we apply, make some default visualization available etc. Parameters ---------- factories Function or list of functions that take no arguments and create masks. The returned masks can be numpy arrays, scipy.sparse or sparse https://sparse.pydata.org/ matrices. The mask factories should not reference large objects because they can create significant overheads when they are pickled and unpickled. If a single function is specified, the first dimension is interpreted as the mask index. dataset dataset to work on use_sparse * None (default): Use sparse matrix multiplication if all factory functions return a \ sparse mask, otherwise convert all masks to dense matrices and use dense matrix \ multiplication * True: Convert all masks to sparse matrices. * False: Convert all masks to dense matrices. mask_count (optional) Specify the number of masks if a single factory function is used so that the number of masks can be determined without calling the factory function. mask_dtype (optional) Specify the dtype of the masks so that mask dtype can be determined without calling the mask factory functions. This can be used to override the mask dtype in the result dtype determination. As an example, setting this to np.float32 means that masks of type float64 will not switch the calculation and result dtype to float64 or complex128. dtype (optional) Specify the dtype to do the calculation in. Integer dtypes are possible if the numpy casting rules allow this for source and mask data. Examples -------- >>> # Use intermediate variables instead of referencing >>> # large complex objects like a dataset within the >>> # factory function >>> shape = dataset.shape.sig >>> job = ctx.create_mask_analysis( ... factories=[lambda: np.ones(shape)], ... dataset=dataset ... ) >>> result = ctx.run(job) >>> result.mask_0.raw_data.shape (16, 16) """ return MasksAnalysis( dataset=dataset, parameters={ "factories": factories, "use_sparse": use_sparse, "mask_count": mask_count, "mask_dtype": mask_dtype, "dtype": dtype }, ) def create_com_analysis(self, dataset, cx: int = None, cy: int = None, mask_radius: int = None): """ Perform a center-of-mass (first moment) analysis, possibly masked. Parameters ---------- dataset the dataset to work on cx reference center x value cy reference center y value mask_radius mask out intensity outside of mask_radius from (cy, cx) """ if dataset.shape.nav.dims != 2: raise ValueError( "incompatible dataset: need two navigation dimensions") if dataset.shape.sig.dims != 2: raise ValueError( "incompatible dataset: need two signal dimensions") loc = locals() parameters = { name: loc[name] for name in ['cx', 'cy'] if loc[name] is not None } if mask_radius is not None: parameters['r'] = mask_radius analysis = COMAnalysis(dataset=dataset, parameters=parameters) return analysis def create_radial_fourier_analysis(self, dataset, cx: float = None, cy: float = None, ri: float = None, ro: float = None, n_bins: int = None, max_order: int = None, use_sparse: bool = None): """ Calculate the Fourier transform of rings around the center. See :class:`~libertem.analysis.radialfourier.RadialFourierAnalysis` for details! Parameters ---------- dataset the dataset to work on cx center x value cy center y value ri inner radius ro outer radius n_bins number of bins max_order maximum order of calculated Fourier component """ if dataset.shape.sig.dims != 2: raise ValueError( "incompatible dataset: need two signal dimensions") loc = locals() parameters = { name: loc[name] for name in ['cx', 'cy', 'ri', 'ro', 'n_bins', 'max_order', 'use_sparse'] if loc[name] is not None } analysis = RadialFourierAnalysis(dataset=dataset, parameters=parameters) return analysis def create_disk_analysis(self, dataset, cx: int = None, cy: int = None, r: int = None): """ Integrate over a disk (i.e. filled circle) Parameters ---------- dataset the dataset to work on cx center x value cy center y value r radius of the disk """ if dataset.shape.sig.dims != 2: raise ValueError( "incompatible dataset: need two signal dimensions") loc = locals() parameters = { name: loc[name] for name in ['cx', 'cy', 'r'] if loc[name] is not None } return DiskMaskAnalysis(dataset=dataset, parameters=parameters) def create_ring_analysis(self, dataset, cx: int = None, cy: int = None, ri: int = None, ro: int = None): """ Integrate over a ring Parameters ---------- dataset the dataset to work on cx center x value cy center y value ri inner radius ro outer radius """ if dataset.shape.sig.dims != 2: raise ValueError( "incompatible dataset: need two signal dimensions") loc = locals() parameters = { name: loc[name] for name in ['cx', 'cy', 'ri', 'ro'] if loc[name] is not None } return RingMaskAnalysis(dataset=dataset, parameters=parameters) def create_point_analysis(self, dataset, x: int = None, y: int = None): """ Select the pixel with coords (y, x) from each frame """ if dataset.shape.nav.dims > 2: raise ValueError( "incompatible dataset: need at most two navigation dimensions") parameters = { 'cx': x, 'cy': y, } parameters = {k: v for k, v in parameters.items() if v is not None} return PointMaskAnalysis(dataset=dataset, parameters=parameters) def create_sum_analysis(self, dataset): """ Sum of all signal elements Parameters ---------- dataset the dataset to work on """ return SumAnalysis(dataset=dataset, parameters={}) def create_pick_job(self, dataset, origin: Tuple[int], shape: Tuple[int] = None) -> np.ndarray: """ Pick raw data from `origin` with the size defined in `shape`. NOTE: if you just want to read single frames, it is easier to use `create_pick_analysis`. NOTE: It is not efficient to use this method on large parts of datasets, please consider implementing a UDF instead. Parameters ---------- dataset The dataset to work on origin Where to start reading. You can either specify all dimensions, or only nav dimensions, in which case the signal is read starting from (0, ..., 0). shape The shape of the data to read. If None, read a "frame" or single signal element Returns ------- :py:class:`numpy.ndarray` the raw data as numpy array Examples -------- >>> dataset = ctx.load( ... filetype="memory", ... data=np.zeros([16, 16, 16, 16, 16], dtype=np.float32), ... sig_dims=2 ... ) >>> origin = (7, 8, 9) >>> job = ctx.create_pick_job(dataset=dataset, origin=origin) >>> result = ctx.run(job) >>> assert result.shape == tuple(dataset.shape.sig) """ # FIXME: this method works well if we can flatten to 3D # need vectorized I/O for general case if len(origin) == dataset.shape.nav.dims: origin = (np.ravel_multi_index(origin, dataset.shape.nav),)\ + tuple([0] * dataset.shape.sig.dims) elif len(origin) == dataset.shape.sig.dims + 1: pass # keep as-is elif len(origin) == 1: origin = origin + tuple([0] * dataset.shape.sig.dims) else: raise ValueError( "incompatible origin: can only read in flattened form") if shape is None: shape = (1, ) + tuple(dataset.shape.sig) else: if len(shape) != dataset.shape.flatten_nav().dims: raise ValueError( "incompatible: shape needs to match the dataset shape") shape = Shape(shape, sig_dims=dataset.shape.sig.dims).flatten_nav() slice_ = Slice(origin=origin, shape=Shape(shape, sig_dims=dataset.shape.sig.dims)) return PickFrameJob( dataset=dataset, slice_=slice_, squeeze=True, ) def create_pick_analysis(self, dataset, x: int, y: int = None, z: int = None): """ Pick a single frame / signal element from (z, y, x). Number of parameters must match number of navigation dimensions in the dataset, for example if you have a 4D dataset with two signal dimensions and two navigation dimensions, you need to specify x and y. Parameters ---------- dataset The dataset to work on x x coordinate y y coordinate z z coordinate Returns ------- :py:class:`numpy.ndarray` the frame as numpy array Examples -------- >>> dataset = ctx.load( ... filetype="memory", ... data=np.zeros([16, 16, 16, 16, 16], dtype=np.float32), ... sig_dims=2 ... ) >>> job = ctx.create_pick_analysis(dataset=dataset, x=9, y=8, z=7) >>> result = ctx.run(job) >>> assert result.intensity.raw_data.shape == tuple(dataset.shape.sig) """ loc = locals() parameters = { name: loc[name] for name in ['x', 'y', 'z'] if loc[name] is not None } return PickFrameAnalysis(dataset=dataset, parameters=parameters) def run(self, job: Union[Job, BaseAnalysis], roi=None): """ Run the given `Job` or `Analysis` and return the result data. Parameters ---------- job the job or analysis to run """ analysis = None if hasattr(job, "get_job"): analysis = job if analysis.TYPE == 'JOB': job_to_run = analysis.get_job() else: if roi is None: roi = analysis.get_roi() udf_results = self.run_udf(dataset=analysis.dataset, udf=analysis.get_udf(), roi=roi) return analysis.get_udf_results(udf_results, roi) else: job_to_run = job if roi is not None: raise TypeError("old-style analyses don't support ROIs") out = job_to_run.get_result_buffer() for tiles in self.executor.run_job(job_to_run): for tile in tiles: tile.reduce_into_result(out) if analysis is not None: return analysis.get_results(out) return out def run_udf(self, dataset: DataSet, udf: UDF, roi=None): """ Run `udf` on `dataset`. Parameters ---------- dataset The dataset to work on udf UDF instance you want to run roi : numpy.ndarray region of interest as bool mask over the navigation axes of the dataset Returns ------- dict: Return value of the UDF containing the result buffers """ return UDFRunner(udf).run_for_dataset(dataset, self.executor, roi) def map(self, dataset, f, roi=None): ''' Create an :class:`AutoUDF` with function :meth:`f` and run it on :code:`dataset` Parameters ---------- dataset: The dataset to work on f: Function that accepts a frame as the only parameter. It should return a strongly reduced output compared to the size of a frame. roi : numpy.ndarray region of interest as bool mask over the navigation axes of the dataset Returns ------- BufferWrapper: The result of the UDF. Access the underlying numpy array using the `data` attribute. Shape and dtype is inferred automatically from :code:`f`. ''' udf = AutoUDF(f=f) results = self.run_udf(dataset=dataset, udf=udf, roi=roi) return results['result'] def _create_local_executor(self): cores = psutil.cpu_count(logical=False) if cores is None: cores = 2 return DaskJobExecutor.make_local(cluster_kwargs={ "threads_per_worker": 1, "n_workers": cores }) def close(self): self.executor.close() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close()
class Context: """ Context is the main entry point of the LiberTEM API. It contains methods for loading datasets, creating jobs on them and running them. """ def __init__(self, executor=None): """ Create a new context. In the background, this creates a suitable executor and spins up a local Dask cluster. """ if executor is None: executor = self._create_local_executor() self.executor = executor def load(self, filetype: str, *args, **kwargs) -> DataSet: """ Load a `DataSet`. As it doesn't load the whole data into RAM at once, you can load and process datasets that are bigger than your available RAM. Using fast storage (i.e. SSD) is advisable. Parameters ---------- filetype : str one of: %(types)s args passed on to the DataSet implementation kwargs passed on to the DataSet implementation Returns ------- DataSet the loaded dataset Note ---- Additional parameters are passed to the concrete DataSet implementation """ # delegate to libertem.io.dataset.load: ds = self.executor.run_function(load, filetype, *args, **kwargs) ds = self.executor.run_function(ds.initialize) ds.set_num_cores(len(self.executor.get_available_workers())) self.executor.run_function(ds.check_valid) return ds load.__doc__ = load.__doc__ % {"types": ", ".join(filetypes.keys())} def create_mask_job(self, factories, dataset, use_sparse=None, mask_count=None, mask_dtype=None, dtype=None): """ Create a low-level mask application job. Each factory function should, when called, return a numpy array with the same shape as frames in the dataset (so dataset.shape.sig). Parameters ---------- factories Function or list of functions that take no arguments and create masks. The returned masks can be numpy arrays, scipy.sparse or sparse https://sparse.pydata.org/ matrices. The mask factories should not reference large objects because they can create significant overheads when they are pickled and unpickled. dataset dataset to work on use_sparse * None (default): Use sparse matrix multiplication if all factory functions return a \ sparse mask, otherwise convert all masks to dense matrices and use dense matrix \ multiplication * True: Convert all masks to sparse matrices. * False: Convert all masks to dense matrices. mask_count (optional) Specify the number of masks if a single factory function is used so that the number of masks can be determined without calling the factory function. mask_dtype (optional) Specify the dtype of the masks so that mask dtype can be determined without calling the mask factory functions. This can be used to override the mask dtype in the result dtype determination. As an example, setting this to np.float32 means that masks of type float64 will not switch the calculation and result dtype to float64 or complex128. dtype (optional) Specify the dtype to do the calculation in. Integer dtypes are possible if the numpy casting rules allow this for source and mask data. Examples -------- >>> from libertem.api import Context >>> ctx = Context() >>> ds = ctx.load("...") >>> # Use intermediate variables instead of referencing >>> # large complex objects like a dataset within the >>> # factory function >>> shape = dataset.shape.sig >>> job = ctx.create_mask_job( ... factories=[lambda: np.ones(shape)], ... dataset=dataset) >>> result = ctx.run(job) """ return ApplyMasksJob( dataset=dataset, mask_factories=factories, use_sparse=use_sparse, mask_count=mask_count, mask_dtype=mask_dtype, dtype=dtype, ) def create_mask_analysis(self, factories, dataset, use_sparse=None, mask_count=None, mask_dtype=None, dtype=None): """ Create a mask application analysis. Each factory function should, when called, return a numpy array with the same shape as frames in the dataset (so dataset.shape.sig). This is a more high-level method than `create_mask_job` and differs in the way the result is returned. With `create_mask_job`, it is a single numpy array, here we split it up for each mask we apply, make some default visualization available etc. Parameters ---------- factories Function or list of functions that take no arguments and create masks. The returned masks can be numpy arrays, scipy.sparse or sparse https://sparse.pydata.org/ matrices. The mask factories should not reference large objects because they can create significant overheads when they are pickled and unpickled. If a single function is specified, the first dimension is interpreted as the mask index. dataset dataset to work on use_sparse * None (default): Use sparse matrix multiplication if all factory functions return a \ sparse mask, otherwise convert all masks to dense matrices and use dense matrix \ multiplication * True: Convert all masks to sparse matrices. * False: Convert all masks to dense matrices. mask_count (optional) Specify the number of masks if a single factory function is used so that the number of masks can be determined without calling the factory function. mask_dtype (optional) Specify the dtype of the masks so that mask dtype can be determined without calling the mask factory functions. This can be used to override the mask dtype in the result dtype determination. As an example, setting this to np.float32 means that masks of type float64 will not switch the calculation and result dtype to float64 or complex128. dtype (optional) Specify the dtype to do the calculation in. Integer dtypes are possible if the numpy casting rules allow this for source and mask data. Examples -------- >>> from libertem.api import Context >>> ctx = Context() >>> ds = ctx.load("...") >>> # Use intermediate variables instead of referencing >>> # large complex objects like a dataset within the >>> # factory function >>> shape = dataset.shape.sig >>> job = ctx.create_mask_analysis( ... factories=[lambda: np.ones(shape)], ... dataset=dataset) >>> result = ctx.run(job) >>> result.mask_0.raw_data """ return MasksAnalysis( dataset=dataset, parameters={ "factories": factories, "use_sparse": use_sparse, "mask_count": mask_count, "mask_dtype": mask_dtype, "dtype": dtype }, ) def create_com_analysis(self, dataset, cx: int = None, cy: int = None, mask_radius: int = None): """ Perform a center-of-mass (first moment) analysis, possibly masked. Parameters ---------- dataset the dataset to work on cx reference center x value cy reference center y value mask_radius mask out intensity outside of mask_radius from (cy, cx) """ if dataset.shape.nav.dims != 2: raise ValueError( "incompatible dataset: need two navigation dimensions") if dataset.shape.sig.dims != 2: raise ValueError( "incompatible dataset: need two signal dimensions") loc = locals() parameters = { name: loc[name] for name in ['cx', 'cy'] if loc[name] is not None } if mask_radius is not None: parameters['r'] = mask_radius analysis = COMAnalysis(dataset=dataset, parameters=parameters) return analysis def create_disk_analysis(self, dataset, cx: int = None, cy: int = None, r: int = None): """ Integrate over a disk (i.e. filled circle) Parameters ---------- dataset the dataset to work on cx center x value cy center y value r radius of the disk """ if dataset.shape.sig.dims != 2: raise ValueError( "incompatible dataset: need two signal dimensions") loc = locals() parameters = { name: loc[name] for name in ['cx', 'cy', 'r'] if loc[name] is not None } return DiskMaskAnalysis(dataset=dataset, parameters=parameters) def create_ring_analysis(self, dataset, cx: int = None, cy: int = None, ri: int = None, ro: int = None): """ Integrate over a ring Parameters ---------- dataset the dataset to work on cx center x value cy center y value ri inner radius ro outer radius """ if dataset.shape.sig.dims != 2: raise ValueError( "incompatible dataset: need two signal dimensions") loc = locals() parameters = { name: loc[name] for name in ['cx', 'cy', 'ri', 'ro'] if loc[name] is not None } return RingMaskAnalysis(dataset=dataset, parameters=parameters) def create_point_analysis(self, dataset, x: int = None, y: int = None): """ Select the pixel with coords (y, x) from each frame """ if dataset.shape.nav.dims > 2: raise ValueError( "incompatible dataset: need at most two navigation dimensions") parameters = { 'cx': x, 'cy': y, } parameters = {k: v for k, v in parameters.items() if v is not None} return PointMaskAnalysis(dataset=dataset, parameters=parameters) def create_sum_analysis(self, dataset): """ Sum of all signal elements Parameters ---------- dataset the dataset to work on """ return SumAnalysis(dataset=dataset, parameters={}) def create_pick_job(self, dataset, origin: Tuple[int], shape: Tuple[int] = None) -> np.ndarray: """ Pick raw data from `origin` with the size defined in `shape`. NOTE: if you just want to read single frames, it is easier to use `create_pick_analysis`. NOTE: It is not efficient to use this method on large parts of datasets, please consider implementing a UDF instead. Parameters ---------- dataset The dataset to work on origin Where to start reading. You can either specify all dimensions, or only nav dimensions, in which case the signal is read starting from (0, ..., 0). shape The shape of the data to read. If None, read a "frame" or single signal element Returns ------- :py:class:`numpy.ndarray` the raw data as numpy array Examples -------- >>> from libertem.api import Context >>> ctx = Context() >>> ds = ctx.load("...") >>> origin = (7, 8, 9) >>> job = create_pick_job(dataset=ds, origin=origin) >>> result = ctx.run(job) >>> assert result.shape == ds.shape.sig """ # FIXME: this method works well if we can flatten to 3D # need vectorized I/O for general case if len(origin) == dataset.shape.nav.dims: origin = (np.ravel_multi_index(origin, dataset.shape.nav),)\ + tuple([0] * dataset.shape.sig.dims) elif len(origin) == dataset.shape.sig.dims + 1: pass # keep as-is elif len(origin) == 1: origin = origin + tuple([0] * dataset.shape.sig.dims) else: raise ValueError( "incompatible origin: can only read in flattened form") if shape is None: shape = (1, ) + tuple(dataset.shape.sig) else: if len(shape) != dataset.shape.flatten_nav().dims: raise ValueError( "incompatible: shape needs to match the dataset shape") shape = Shape(shape, sig_dims=dataset.shape.sig.dims).flatten_nav() slice_ = Slice(origin=origin, shape=Shape(shape, sig_dims=dataset.shape.sig.dims)) return PickFrameJob( dataset=dataset, slice_=slice_, squeeze=True, ) def create_pick_analysis(self, dataset, x: int, y: int = None, z: int = None): """ Pick a single frame / signal element from (z, y, x). Number of parameters must match number of navigation dimensions in the dataset, for example if you have a 4D dataset with two signal dimensions and two navigation dimensions, you need to specify x and y. Parameters ---------- dataset The dataset to work on x x coordinate y y coordinate z z coordinate Returns ------- :py:class:`numpy.ndarray` the frame as numpy array Examples -------- >>> from libertem.api import Context >>> ctx = Context() >>> ds = ctx.load("...") >>> origin = (7, 8, 9) >>> job = create_pick_analysis(dataset=ds, x=9, y=8, z=7) >>> result = ctx.run(job) >>> assert result.intensity.raw_data.shape == ds.shape.sig """ loc = locals() parameters = { name: loc[name] for name in ['x', 'y', 'z'] if loc[name] is not None } return PickFrameAnalysis(dataset=dataset, parameters=parameters) def run(self, job: Union[Job, BaseAnalysis]): """ Run the given `Job` or `Analysis` and return the result data. Parameters ---------- job the job or analysis to run """ analysis = None if hasattr(job, "get_job"): analysis = job job_to_run = analysis.get_job() else: job_to_run = job out = job_to_run.get_result_buffer() for tiles in self.executor.run_job(job_to_run): for tile in tiles: tile.reduce_into_result(out) if analysis is not None: return analysis.get_results(out) return out def run_udf(self, dataset, fn, make_buffers, init=None, merge=merge_assign, roi=None): """ Run `fn` on `dataset`. Parameters ---------- dataset The dataset to work on init Function to perform initialization. Should return a dict of variables that will be shared between calls calls of your function. Note that these variables should be considered read-only; they are not meant as a way to communicate between calls. make_buffers Function that returns a dict, mapping buffer names to BufferWrapper instances fn The function to run on the dataset. It needs to accept the frame as keyword argument. Additionally, it needs to have a parameter for each buffer created in make_buffers, and also for each variable returned from the init function. merge A function merging a partial result into the final result buffer. By default it just performs assignment. roi : np.ndarray region of interest as bool mask over the navigation axes of the dataset Example ------- This example creates a "sum image", where all pixels of each diffraction pattern are summed up: >>> def my_buffers(): >>> return { >>> 'pixelsum': BufferWrapper( >>> kind="nav", dtype="float32" >>> ) >>> } >>> def my_frame_fn(frame, pixelsum): >>> pixelsum[:] = np.sum(frame) >>> ctx = Context() >>> ds = ctx.load(...) >>> res = ctx.run_udf( >>> dataset=ds, >>> fn=my_frame_fn, >>> make_buffers=my_buffers, >>> ) """ result_buffers = make_buffers() for buf in result_buffers.values(): buf.set_shape_ds(dataset, roi=roi) buf.allocate() cancel_id = str(uuid.uuid4()) tasks = make_udf_tasks(dataset, fn, init, make_buffers, roi) for partition_result_buffers, partition in self.executor.run_tasks( tasks, cancel_id): buffer_views = {} for k, buf in result_buffers.items(): buffer_views[k] = buf.get_view_for_partition( partition=partition) buffers = { k: b.raw_data for k, b in partition_result_buffers.items() } merge(dest=MappingProxyType(buffer_views), src=MappingProxyType(buffers)) return result_buffers def _create_local_executor(self): cores = psutil.cpu_count(logical=False) if cores is None: cores = 2 return DaskJobExecutor.make_local(cluster_kwargs={ "threads_per_worker": 1, "n_workers": cores }) def close(self): self.executor.close() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close()
class Context: """ Context is the main entry point of the LiberTEM API. It contains methods for loading datasets, creating analyses on them and running them. In the background, instantiating a Context creates a suitable executor and spins up a local Dask cluster unless the executor is passed to the constructor. .. versionchanged:: 0.7.0 Removed deprecated methods :code:`create_mask_job`, :code:`create_pick_job` Parameters ---------- executor : ~libertem.common.executor.JobExecutor or None If None, create a local dask.distributed cluster and client using :meth:`~libertem.executor.dask.DaskJobExecutor.make_local` with optimal configuration for LiberTEM. It uses all cores and compatible GPUs on the local system, but is not set as default Dask scheduler to not interfere with other uses of Dask. plot_class : libertem.viz.base.Live2DPlot Default plot class for live plotting. Defaults to :class:`libertem.viz.mpl.MPLLive2DPlot`. .. versionadded:: 0.7.0 Attributes ---------- plot_class : libertem.viz.base.Live2DPlot Default plot class for live plotting. Defaults to :class:`libertem.viz.mpl.MPLLive2DPlot`. .. versionadded:: 0.7.0 Examples -------- >>> ctx = libertem.api.Context() # doctest: +SKIP >>> # Create a Context using an inline executor for debugging >>> from libertem.executor.inline import InlineJobExecutor >>> debug_ctx = libertem.api.Context(executor=InlineJobExecutor()) """ def __init__(self, executor: Optional[JobExecutor] = None, plot_class=None): if executor is None: executor = self._create_local_executor() self.executor = executor self._plot_class = plot_class @classmethod def make_with(cls, executor_spec: ExecutorSpecType, *args, **kwargs) -> 'Context': ''' Create a Context with a specific kind of executor. .. versionadded:: 0.9.0 This simplifies creating a :class:`Context` for a number of common executor choices. See :ref:`executors` for general information on executors. Parameters ---------- executor_spec: A string identifier for executor variants: "synchronous", "inline": Use a single-process, single-threaded :class:`~libertem.executor.inline.InlineJobExecutor` "threads": Use a multi-threaded :class:`~libertem.executor.concurrent.ConcurrentJobExecutor` "dask-integration": Use a JobExecutor that is compatible with the currently active Dask scheduler. See :func:`~libertem.executor.integration.get_dask_integration_executor` for more information. "dask-make-default": Create a local :code:`dask.distributed` cluster and client using :meth:`~libertem.executor.dask.DaskJobExecutor.make_local`, similar to the default behaviour of :code:`Context()` called with no arguments. However, the Client will be set as the default Dask scheduler and will persist after the LiberTEM Context closes, which is suitable for downstream computation using :code:`dask.distributed`. "delayed": Create a :class:`~libertem.executor.delayed.DelayedJobExecutor` which performs computation using `dask.delayed <https://docs.dask.org/en/stable/delayed.html>`_. This functionality is highly experimental at this time, see :ref:`delayed_udfs` for more information. *args, **kwargs Passed to :class:`Context`. Returns ------- Instance of :class:`Context` using a new instance of the specified executor. ''' if executor_spec in ('synchronous', 'inline'): executor = InlineJobExecutor() elif executor_spec == 'threads': executor = ConcurrentJobExecutor.make_local() elif executor_spec == 'dask-integration': executor = get_dask_integration_executor() elif executor_spec == 'dask-make-default': executor = DaskJobExecutor.make_local( client_kwargs={"set_as_default": True}) elif executor_spec == 'delayed': executor = DelayedJobExecutor() else: raise ValueError( f'Argument `executor_spec` is {executor_spec}. Allowed are ' f'synchronous", "inline", "threads", "dask-integration" or "dask-make-default".' ) return cls(executor=executor, *args, **kwargs) @property def plot_class(self): if self._plot_class is None: from libertem.viz.mpl import MPLLive2DPlot self._plot_class = MPLLive2DPlot return self._plot_class @plot_class.setter def plot_class(self, value): self._plot_class = value def load(self, filetype: str, *args, io_backend=None, **kwargs) -> DataSet: """ Load a :class:`~libertem.io.dataset.base.DataSet`. As it doesn't load the whole data into RAM at once, you can load and process datasets that are bigger than your available RAM. Using fast storage (i.e. SSD) is advisable. .. versionchanged:: 0.5.0 Added support for filetype="auto" .. versionchanged:: 0.6.0 Added support for specifying the I/O backend Parameters ---------- filetype : str one of: %(types)s; or use "auto" to automatically determine filetype and parameters io_backend : IOBackend or None Use a different I/O backend for this data set args passed on to the DataSet implementation kwargs passed on to the DataSet implementation Returns ------- DataSet : libertem.io.dataset.base.DataSet The loaded dataset Note ---- Additional parameters are passed to the concrete :class:`~libertem.io.dataset.base.DataSet` implementation. Note ---- See :ref:`dataset api` for format-specific documentation. Examples -------- Load a data set from a given path, automatically determinig the type: >>> ds = ctx.load("auto", path="...") # doctest: +SKIP To configure an alternative I/O backend, in this case configuring the mmap backend to enable readahead hints: >>> from libertem.io.dataset.base import MMapBackend >>> io_backend = MMapBackend(enable_readahead_hints=True) >>> ds = ctx.load("auto", path="...", io_backend=io_backend) # doctest: +SKIP """ # delegate to libertem.io.dataset.load: return load( filetype, *args, io_backend=io_backend, executor=self.executor, enable_async=False, **kwargs, ) # If people run with -OO, which strips docstrings, we must not # try to treat load.__doc__ as `str`: if load.__doc__ is not None: load.__doc__ = load.__doc__ % {"types": ", ".join(filetypes.keys())} def create_mask_analysis(self, factories: MaskFactoriesType, dataset: DataSet, use_sparse: bool = None, mask_count: int = None, mask_dtype: np.dtype = None, dtype: np.dtype = None) -> MasksAnalysis: """ Create a mask application analysis. Each factory function should, when called, return a numpy array with the same shape as frames in the dataset (so :code:`dataset.shape.sig`). This is a more high-level interface than :class:`~libertem.udf.masks.ApplyMasksUDF` and differs in the way the result is returned. With :class:`~libertem.udf.masks.ApplyMasksUDF`, it is a single numpy array, here we split it up for each mask we apply, make some default visualization available etc. Parameters ---------- factories : Union[Callable[[], array_like], Iterable[Callable[[], array_like]]] Function or list of functions that take no arguments and create masks. The returned masks can be numpy arrays, scipy.sparse or sparse https://sparse.pydata.org/ matrices. The mask factories should not reference large objects because they can create significant overheads when they are pickled and unpickled. If a single function is specified, the first dimension is interpreted as the mask index. dataset : libertem.io.dataset.base.DataSet dataset to work on use_sparse : bool or None * None (default): Use sparse matrix multiplication if all factory functions return a \ sparse mask, otherwise convert all masks to dense matrices and use dense matrix \ multiplication * True: Convert all masks to sparse matrices. * False: Convert all masks to dense matrices. mask_count : int, optional Specify the number of masks if a single factory function is used so that the number of masks can be determined without calling the factory function. mask_dtype : numpy.dtype, optional Specify the dtype of the masks so that mask dtype can be determined without calling the mask factory functions. This can be used to override the mask dtype in the result dtype determination. As an example, setting this to :code:`np.float32` means that returning masks of type float64 will not switch the calculation and result dtype to float64 or complex128. dtype : numpy.dtype, optional Specify the dtype to do the calculation in. Integer dtypes are possible if the numpy casting rules allow this for source and mask data. Returns ------- MasksAnalysis : libertem.analysis.base.Analysis When run by the Context, this Analysis generates a :class:`libertem.analysis.masks.MasksResultSet`. Examples -------- >>> # Use intermediate variables instead of referencing >>> # large complex objects like a dataset within the >>> # factory function >>> shape = dataset.shape.sig >>> analysis = ctx.create_mask_analysis( ... factories=[lambda: np.ones(shape)], ... dataset=dataset ... ) >>> result = ctx.run(analysis) >>> result.mask_0.raw_data.shape (16, 16) """ return MasksAnalysis( dataset=dataset, parameters={ "factories": factories, "use_sparse": use_sparse, "mask_count": mask_count, "mask_dtype": mask_dtype, "dtype": dtype }, ) def create_com_analysis(self, dataset: DataSet, cx: int = None, cy: int = None, mask_radius: float = None, flip_y: bool = False, mask_radius_inner: float = None, scan_rotation: float = 0.0) -> COMAnalysis: """ Create a center-of-mass (first moment) analysis, possibly masked. Parameters ---------- dataset the dataset to work on cx reference center x value cy reference center y value mask_radius mask out intensity outside of `mask_radius` from `(cy, cx)` mask_radius_inner mask out intensity except for the ring between `mask_radius_inner` and `mask_radius`, centered around `(cy, cx)` .. versionadded:: 0.8.0 flip_y : bool Flip the Y coordinate. Some detectors, namely Quantum Detectors Merlin, may have pixel (0, 0) at the lower left corner. This has to be corrected to get the sign of the y shift as well as curl and divergence right. .. versionadded:: 0.6.0 scan_rotation : float Scan rotation in degrees. The optics of an electron microscope can rotate the image. Furthermore, scan generators may allow scanning in arbitrary directions. This means that the x and y coordinates of the detector image are usually not parallel to the x and y scan coordinates. For interpretation of center of mass shifts, however, the shift vector in detector coordinates has to be put in relation to the position on the sample. The :code:`scan_rotation` parameter can be used to rotate the detector coordinates to match the scan coordinate system. A positive value rotates the displacement vector clock-wise. That means if the detector seems rotated to the right relative to the scan, this value should be negative to counteract this rotation. .. versionadded:: 0.6.0 Returns ------- COMAnalysis : libertem.analysis.base.Analysis When run by the Context, this Analysis generates a :class:`libertem.analysis.com.COMResultSet`. """ if dataset.shape.nav.dims != 2: raise ValueError( "incompatible dataset: need two navigation dimensions") if dataset.shape.sig.dims != 2: raise ValueError( "incompatible dataset: need two signal dimensions") loc = locals() parameters = { name: loc[name] for name in ['cx', 'cy', 'flip_y', 'scan_rotation'] if loc[name] is not None } if mask_radius is not None: parameters['r'] = mask_radius if mask_radius_inner is not None: if mask_radius is None: raise ValueError( "incompatible parameters: must pass both `mask_radius` and " "`mask_radius_inner` for annular CoM") parameters['ri'] = mask_radius_inner analysis = COMAnalysis(dataset=dataset, parameters=parameters) return analysis def create_radial_fourier_analysis( self, dataset: DataSet, cx: float = None, cy: float = None, ri: float = None, ro: float = None, n_bins: int = None, max_order: int = None, use_sparse: bool = None) -> RadialFourierAnalysis: """ Create an Analysis that calculates the Fourier transform of rings around the center. See :ref:`radialfourier app` for details on the method! Parameters ---------- dataset the dataset to work on cx center x value cy center y value ri inner radius ro outer radius n_bins number of bins max_order maximum order of calculated Fourier component Returns ------- RadialFourierAnalysis : libertem.analysis.base.Analysis When run by the Context, this Analysis generates a :class:`libertem.analysis.radialfourier.RadialFourierResultSet`. """ if dataset.shape.sig.dims != 2: raise ValueError( "incompatible dataset: need two signal dimensions") loc = locals() parameters = { name: loc[name] for name in ['cx', 'cy', 'ri', 'ro', 'n_bins', 'max_order', 'use_sparse'] if loc[name] is not None } analysis = RadialFourierAnalysis(dataset=dataset, parameters=parameters) return analysis def create_disk_analysis(self, dataset: DataSet, cx: int = None, cy: int = None, r: int = None) -> DiskMaskAnalysis: """ Create an Analysis that integrates over a disk (i.e. filled circle). Parameters ---------- dataset the dataset to work on cx center x value cy center y value r radius of the disk Returns ------- DiskMaskAnalysis : libertem.analysis.base.Analysis When run by the Context, this Analysis generates a :class:`libertem.analysis.masks.SingleMaskResultSet`. """ if dataset.shape.sig.dims != 2: raise ValueError( "incompatible dataset: need two signal dimensions") loc = locals() parameters = { name: loc[name] for name in ['cx', 'cy', 'r'] if loc[name] is not None } return DiskMaskAnalysis(dataset=dataset, parameters=parameters) def create_ring_analysis(self, dataset: DataSet, cx: int = None, cy: int = None, ri: int = None, ro: int = None) -> RingMaskAnalysis: """ Create an Analysis that integrates over a ring. Parameters ---------- dataset the dataset to work on cx center x value cy center y value ri inner radius ro outer radius Returns ------- RingMaskAnalysis : libertem.analysis.base.Analysis When run by the Context, this Analysis generates a :class:`libertem.analysis.masks.SingleMaskResultSet`. """ if dataset.shape.sig.dims != 2: raise ValueError( "incompatible dataset: need two signal dimensions") loc = locals() parameters = { name: loc[name] for name in ['cx', 'cy', 'ri', 'ro'] if loc[name] is not None } return RingMaskAnalysis(dataset=dataset, parameters=parameters) def create_point_analysis(self, dataset: DataSet, x: int = None, y: int = None) -> PointMaskAnalysis: """ Create an Analysis that selects the pixel with coords (y, x) from each frame Returns ------- PointMaskAnalysis : libertem.analysis.base.Analysis When run by the Context, this Analysis generates a :class:`libertem.analysis.masks.SingleMaskResultSet`. """ if dataset.shape.nav.dims > 2: raise ValueError( "incompatible dataset: need at most two navigation dimensions") parameters = { 'cx': x, 'cy': y, } parameters = {k: v for k, v in parameters.items() if v is not None} return PointMaskAnalysis(dataset=dataset, parameters=parameters) def create_sum_analysis(self, dataset) -> SumAnalysis: """ Create an Analysis that sums all signal elements along the navigation dimension, preserving the signal dimension. Parameters ---------- dataset the dataset to work on Returns ------- SumAnalysis : libertem.analysis.base.Analysis When run by the Context, this Analysis generates a :class:`libertem.analysis.sum.SumResultSet`. """ return SumAnalysis(dataset=dataset, parameters={}) def create_pick_analysis(self, dataset: DataSet, x: int, y: int = None, z: int = None) -> PickFrameAnalysis: """ Create an Analysis that picks a single frame / signal element from (z, y, x). The number of parameters must match number of navigation dimensions in the dataset, for example if you have a 4D dataset with two signal dimensions and two navigation dimensions, you need to specify x and y. Parameters ---------- dataset The dataset to work on x x coordinate y y coordinate z z coordinate Returns ------- PickFrameAnalysis : libertem.analysis.base.Analysis When run by the Context, this Analysis generates a :class:`libertem.analysis.raw.PickResultSet`. Examples -------- >>> dataset = ctx.load( ... filetype="memory", ... data=np.zeros([16, 16, 16, 16, 16], dtype=np.float32), ... sig_dims=2 ... ) >>> analysis = ctx.create_pick_analysis(dataset=dataset, x=9, y=8, z=7) >>> result = ctx.run(analysis) >>> assert result.intensity.raw_data.shape == tuple(dataset.shape.sig) """ loc = locals() parameters = { name: loc[name] for name in ['x', 'y', 'z'] if loc[name] is not None } return PickFrameAnalysis(dataset=dataset, parameters=parameters) def run( self, job: Analysis, roi: Optional[np.ndarray] = None, progress: bool = False, corrections: Optional[CorrectionSet] = None, ) -> Union[np.ndarray, AnalysisResultSet]: """ Run the given :class:`~libertem.analysis.base.Analysis` and return the result data. .. versionchanged:: 0.5.0 Added the :code:`progress` parameter .. versionchanged:: 0.6.0 Added the :code:`corrections` parameter .. versionchanged:: 0.7.0 Removed deprecated Job support, now only UDF-based analyses are supported Parameters ---------- job the analysis to run roi : numpy.ndarray, optional Boolean mask of the navigation dimension. progress : bool Show progress bar corrections Corrections to apply, i.e. dark frame substraction, applying a gain map, ... Returns ------- result : libertem.analysis.base.AnalysisResultSet Running an Analysis returns a :class:`libertem.analysis.base.AnalysisResultSet`. See the matching :code:`create_*_analysis` function for documentation of the specific :code:`AnalysisResultSet` subclass or :class:`numpy.ndarray` that is being returned. """ analysis = job # keep the old kwarg name for backward-compat. if roi is None: roi = analysis.get_roi() udf_results: UDFResultDict = self.run_udf( # type:ignore[assignment] dataset=analysis.dataset, udf=analysis.get_udf(), roi=roi, corrections=corrections, progress=progress, ) # Here we plot only after the computation is completed, meaning the damage should be # the ROI or the entire nav dimension. # TODO live plotting following libertem.web.jobs.JobDetailHandler.run_udf # Current Analysis interface possibly made obsolete by #1013, so deferred damage: "nt.ArrayLike" if roi is None: damage = True else: damage = roi return analysis.get_udf_results(udf_results, roi, damage=damage) def run_udf( self, dataset: DataSet, udf: Union[UDF, Iterable[UDF]], roi: Optional[np.ndarray] = None, corrections: Optional[CorrectionSet] = None, progress: bool = False, backends=None, plots=None, sync=True, ) -> Union[RunUDFResultType, RunUDFSyncL, RunUDFAsync, RunUDFAsyncL]: """ Run :code:`udf` on :code:`dataset`, restricted to the region of interest :code:`roi`. .. versionchanged:: 0.5.0 Added the :code:`progress` parameter .. versionchanged:: 0.6.0 Added the :code:`corrections` and :code:`backends` parameter .. versionchanged:: 0.7.0 Added the :code:`plots` and :code:`sync` parameters, and the ability to run multiple UDFs on the same data in a single pass. Parameters ---------- dataset The dataset to work on udf UDF instance you want to run, or a list of UDF instances roi : numpy.ndarray Region of interest as bool mask over the navigation axes of the dataset progress : bool Show progress bar corrections Corrections to apply while running the UDF. If none are given, the corrections that are part of the :code:`DataSet` are used, if there are any. See also :ref:`corrections`. backends : None or iterable containing 'numpy', 'cupy' and/or 'cuda' Restrict the back-end to a subset of the capabilities of the UDF. This can be useful for testing hybrid UDFs. plots : None or True or List[List[Union[str, Tuple[str, Callable]]]] or List[LivePlot] - :code:`None`: don't plot anything (default) - :code:`True`: plot all 2D UDF result buffers - :code:`List[List[...]]`: plot the named UDF buffers. Pass a list of names or (name, callable) tuples for each UDF you want to plot. If the callable is specified, it is applied to the UDF buffer before plotting. - :code:`List[LivePlot]`: :class:`~libertem.viz.base.LivePlot` instance for each channel you want to plot .. versionadded:: 0.7.0 sync : bool By default, `run_udf` is a synchronous method. If `sync` is set to `False`, it is awaitable instead. .. versionadded:: 0.7.0 Returns ------- dict or Tuple[dict] Return value of the UDF containing the result buffers of type :class:`libertem.common.buffers.BufferWrapper`. Note that a :class:`~libertem.common.buffers.BufferWrapper` can be used like a :class:`numpy.ndarray` in many cases because it implements :meth:`__array__`. You can access the underlying numpy array using the :attr:`~libertem.common.buffers.BufferWrapper.data` property. If a list of UDFs was passed in, the returned type is a Tuple[dict[str,BufferWrapper]]. Examples -------- Run the `SumUDF` on a data set: >>> from libertem.udf.sum import SumUDF >>> result = ctx.run_udf(dataset=dataset, udf=SumUDF()) >>> np.array(result["intensity"]).shape (32, 32) >>> # intensity is the name of the result buffer, defined in the SumUDF Running a UDF on a subset of data: >>> from libertem.udf.sumsigudf import SumSigUDF >>> roi = np.zeros(dataset.shape.nav, dtype=bool) >>> roi[0, 0] = True >>> result = ctx.run_udf(dataset=dataset, udf=SumSigUDF(), roi=roi) >>> # to get the full navigation-shaped results, with NaNs where the `roi` was False: >>> np.array(result["intensity"]).shape (16, 16) >>> # to only get the selected results as a flat array: >>> result["intensity"].raw_data.shape (1,) """ # TODO: add a more narrow type signature - instead of a Union[...], we should # have overloads depending on both the type of `udf` and the `Literal[...]` value # of `iterate`. This was not yet added because of # https://github.com/python/mypy/issues/6580 # In short, we can't have an overload `run_udf(..., plots=None, sync: Literal[True])` # because either we have a non-default argument after a default argument, or we have # `Literal[True] = ...` which overlaps with `Literal[False] = ...`` if sync: return self._run_sync( dataset=dataset, udf=udf, roi=roi, corrections=corrections, progress=progress, backends=backends, plots=plots, iterate=False, ) else: return self._run_async( dataset=dataset, udf=udf, roi=roi, corrections=corrections, progress=progress, backends=backends, plots=plots, iterate=False, ) def run_udf_iter( self, dataset: DataSet, udf: Union[UDF, Iterable[UDF]], roi: np.ndarray = None, corrections: CorrectionSet = None, progress: bool = False, backends=None, plots=None, sync=True, ) -> Union[RunUDFGenType, RunUDFAGenType, RunUDFGenTypeL, RunUDFAGenTypeL]: """ Run :code:`udf` on :code:`dataset`, restricted to the region of interest :code:`roi`. Yields partial results after each merge operation. .. versionadded:: 0.7.0 Parameters ---------- dataset The dataset to work on udf UDF instance you want to run, or a list of UDF instances roi : numpy.ndarray Region of interest as bool mask over the navigation axes of the dataset progress : bool Show progress bar corrections Corrections to apply while running the UDF. If none are given, the corrections that are part of the :code:`DataSet` are used, if there are any. See also :ref:`corrections`. backends : None or iterable containing 'numpy', 'cupy' and/or 'cuda' Restrict the back-end to a subset of the capabilities of the UDF. This can be useful for testing hybrid UDFs. plots : None or True or List[List[Union[str, Tuple[str, Callable]]]] or List[LivePlot] - :code:`None`: don't plot anything (default) - :code:`True`: plot all 2D UDF result buffers - :code:`List[List[...]]`: plot the named UDF buffers. Pass a list of names or (name, callable) tuples for each UDF you want to plot. If the callable is specified, it is applied to the UDF buffer before plotting. - :code:`List[LivePlot]`: :class:`~libertem.viz.base.LivePlot` instance for each channel you want to plot sync : bool By default, `run_udf_iter` is a synchronous method. If `sync` is set to `False`, an async generator will be returned instead. Returns ------- Generator[UDFResults] Generator of :class:`~libertem.udf.base.UDFResults` container objects. Their attribute :code:`buffers` is the list of result buffer dictionaries for the UDFs. Attribute :code:`damage` is a :class:`~libertem.common.buffers.BufferWrapper` of :code:`kind='nav'`, :code:`dtype=bool` indicating the positions in nav space that have been processed already. Examples -------- Run the `SumUDF` on a data set: >>> from libertem.udf.sum import SumUDF >>> for result in ctx.run_udf_iter(dataset=dataset, udf=SumUDF()): ... assert np.array(result.buffers[0]["intensity"]).shape == (32, 32) >>> np.array(result.buffers[0]["intensity"]).shape (32, 32) >>> # intensity is the name of the result buffer, defined in the SumUDF """ if sync: return self._run_sync( dataset=dataset, udf=udf, roi=roi, corrections=corrections, progress=progress, backends=backends, plots=plots, iterate=True, ) else: return self._run_async( dataset=dataset, udf=udf, roi=roi, corrections=corrections, progress=progress, backends=backends, plots=plots, iterate=True, ) @overload def _run_sync( self, dataset: DataSet, udf: UDF, roi: np.ndarray, corrections: Optional[CorrectionSet], progress: bool, backends: Optional[Any], plots: Optional[Any], iterate: Literal[False], ) -> UDFResultDict: ... @overload def _run_sync( self, dataset: DataSet, udf: UDF, roi: Optional[np.ndarray], corrections: Optional[CorrectionSet], progress: bool, backends: Optional[Any], plots: Optional[Any], iterate: Literal[True], ) -> RunUDFGenType: ... @overload def _run_sync( self, dataset: DataSet, udf: Iterable[UDF], roi: Optional[np.ndarray], corrections: Optional[CorrectionSet], progress: bool, backends: Optional[Any], plots: Optional[Any], iterate: Literal[False], ) -> RunUDFSyncL: ... @overload def _run_sync( self, dataset: DataSet, udf: Iterable[UDF], roi: Optional[np.ndarray], corrections: Optional[CorrectionSet], progress: bool, backends: Optional[Any], plots: Optional[Any], iterate: Literal[True], ) -> RunUDFGenTypeL: ... @overload def _run_sync( self, dataset: DataSet, udf: Union[Iterable[UDF], UDF], roi: Optional[np.ndarray], corrections: Optional[CorrectionSet], progress: bool, backends: Optional[Any], plots: Optional[Any], iterate: Literal[True], ) -> Union[RunUDFGenType, RunUDFGenTypeL]: ... @overload def _run_sync( self, dataset: DataSet, udf: Union[Iterable[UDF], UDF], roi: Optional[np.ndarray], corrections: Optional[CorrectionSet], progress: bool, backends: Optional[Any], plots: Optional[Any], iterate: Literal[False], ) -> Union[UDFResultDict, RunUDFSyncL]: ... @overload def _run_sync( self, dataset: DataSet, udf: Union[Iterable[UDF], UDF], roi: Optional[np.ndarray], corrections: Optional[CorrectionSet], progress: bool, backends: Optional[Any], plots: Optional[Any], iterate: bool, ) -> Union[UDFResultDict, RunUDFSyncL, RunUDFGenType, RunUDFGenTypeL]: ... def _run_sync( self, dataset: DataSet, udf: Union[UDF, Iterable[UDF]], roi: Optional[np.ndarray], corrections: Optional[CorrectionSet], progress: bool, backends, plots, iterate: bool, ): """ Run the given UDF(s), either returning the final result (when :code:`iterate=False` is given), or a generator that yields partial results. """ enable_plotting = bool(plots) udf_is_list = isinstance(udf, Iterable) if not isinstance(udf, Iterable): udfs = [udf] else: udfs = list(udf) if enable_plotting: plots = self._prepare_plots(udfs, dataset, roi, plots) if corrections is None: corrections = dataset.get_correction_data() if (roi is not None) and (roi.dtype is not np.dtype(bool)): warnings.warn( f"ROI dtype is {roi.dtype}, expected bool. Attempting cast to bool." ) roi = roi.astype(bool) def _run_sync_wrap() -> Generator[UDFResults, None, None]: runner_cls = self.executor.get_udf_runner() result_iter = runner_cls(udfs).run_for_dataset_sync( dataset=dataset, executor=self.executor, roi=roi, progress=progress, corrections=corrections, backends=backends, iterate=(iterate or enable_plotting)) for udf_results in result_iter: yield udf_results if enable_plotting: self._update_plots(plots, udfs, udf_results.buffers, udf_results.damage.data, force=False) if enable_plotting: self._update_plots(plots, udfs, udf_results.buffers, udf_results.damage.data, force=True) if iterate: return _run_sync_wrap() else: udf_results = run_gen_get_last(_run_sync_wrap()) if udf_is_list: return udf_results.buffers else: return udf_results.buffers[0] @overload def _run_async( self, dataset: DataSet, udf: UDF, roi: Optional[np.ndarray], corrections: Optional[CorrectionSet], progress: bool, backends, plots, iterate: Literal[False], ) -> RunUDFAsync: ... @overload def _run_async( self, dataset: DataSet, udf: Iterable[UDF], roi: Optional[np.ndarray], corrections: Optional[CorrectionSet], progress: bool, backends, plots, iterate: Literal[False], ) -> RunUDFAsyncL: ... @overload def _run_async( self, dataset: DataSet, udf: UDF, roi: Optional[np.ndarray], corrections: Optional[CorrectionSet], progress: bool, backends, plots, iterate: Literal[True], ) -> RunUDFAGenType: ... @overload def _run_async( self, dataset: DataSet, udf: Iterable[UDF], roi: Optional[np.ndarray], corrections: Optional[CorrectionSet], progress: bool, backends, plots, iterate: Literal[True], ) -> RunUDFAGenTypeL: ... @overload def _run_async( self, dataset: DataSet, udf: Union[UDF, Iterable[UDF]], roi: Optional[np.ndarray], corrections: Optional[CorrectionSet], progress: bool, backends, plots, iterate: Literal[True], ) -> Union[RunUDFAGenTypeL, RunUDFAGenType]: ... @overload def _run_async( self, dataset: DataSet, udf: Union[UDF, Iterable[UDF]], roi: Optional[np.ndarray], corrections: Optional[CorrectionSet], progress: bool, backends, plots, iterate: Literal[False], ) -> Union[RunUDFAsync, RunUDFAsyncL]: ... @overload def _run_async( self, dataset: DataSet, udf: Union[Iterable[UDF], UDF], roi: Optional[np.ndarray], corrections: Optional[CorrectionSet], progress: bool, backends, plots, iterate: bool, ) -> Union[RunUDFAsync, RunUDFAsyncL, RunUDFAGenType, RunUDFAGenTypeL]: ... def _run_async( self, dataset: DataSet, udf: Union[UDF, Iterable[UDF]], roi: Optional[np.ndarray], corrections: Optional[CorrectionSet], progress: bool, backends, plots, iterate: bool, ): """ Wraps :code:`_run_sync` into an asynchronous generator, and either returns the generator itself, or the end result. """ sync_generator = self._run_sync( dataset=dataset, udf=udf, roi=roi, corrections=corrections, progress=progress, backends=backends, plots=plots, iterate=True, ) udfres_iter = async_generator(sync_generator) async def _run_async_wrap() -> UDFResultDict: udf_results = await run_agen_get_last(udfres_iter) return udf_results.buffers[0] async def _run_async_wrap_l() -> List[UDFResultDict]: udf_results = await run_agen_get_last(udfres_iter) return udf_results.buffers if iterate: return udfres_iter else: if isinstance(udf, Iterable): return _run_async_wrap_l() else: return _run_async_wrap() def _get_default_plot_chans(self, buffers): from libertem.viz import get_plottable_2D_channels return [get_plottable_2D_channels(bufferset) for bufferset in buffers] def _prepare_plots(self, udfs, dataset, roi, plots): runner_cls = self.executor.get_udf_runner() dry_results = runner_cls.dry_run(udfs, dataset, roi) # cases to consider: # 1) plots is `True`: default plots of all eligible channels # 2) plots is List[List[str]] or List[List[(str, callable)]]: set channels from `plots` # 3) plots is List[LivePlot]: use customized plots as they are channels = None # 1) plots is `True`: default plots of all eligible channels if plots is True: channels = self._get_default_plot_chans(dry_results.buffers) for idx, udf in enumerate(udfs): if len(channels[idx]) == 0: warnings.warn( f"No plottable channels found for UDF " f"#{idx}: {udf.__class__.__name__}, not plotting.") # 2) plots is List[List[str]] or List[List[(str, callable)]]: set channels from `plots` elif (isinstance(plots, (list, tuple)) and all(isinstance(p, (list, tuple)) for p in plots) and all( all(isinstance(pp, (str, list, tuple)) for pp in p) for p in plots)): channels = plots # 3) plots is probably List[LivePlot]: use customized plots as they are else: return plots plots = [] for idx, (udf, udf_channels) in enumerate(zip(udfs, channels)): for channel in udf_channels: p0 = self.plot_class( dataset, udf=udf, roi=roi, channel=channel, # Create an UDFResult from this single UDF udfresult=UDFResults((dry_results.buffers[idx], ), dry_results.damage), ) p0.display() plots.append(p0) return plots def _update_plots(self, plots, udfs, udf_results, damage, force=False): for plot in plots: udf = plot.get_udf() udf_index = udfs.index(udf) plot.new_data(udf_results[udf_index], damage, force=force) def display(self, dataset: DataSet, udf: UDF, roi=None): """ Show information about the UDF in combination with the given DataSet. """ import html class _UDFInfo: def __init__(self, title, buffers): self.title = title self.buffers = buffers def _repr_html_(self): def _e(obj): return html.escape(str(obj)) rows = [ "<tr>" f"<td>{_e(key)}</td>" f"<td>{_e(buf.kind)}</td>" f"<td>{_e(buf.extra_shape)}</td>" f"<td>{_e(buf.shape)}</td>" f"<td>{_e(buf.dtype)}</td>" "</tr>" for key, buf in self.buffers.items() if buf.use != "private" ] rows = "\n".join(rows) general = f""" <table> <tbody> <tr> <th>Processing method</th> <td>{_e(udf.get_method())}</td> </tr> <tr> <th>Compute Backends</th> <td>{_e(" ,".join(udf.get_backends()))}</td> </tr> <tr> <th>Preferred input dtype</th> <td>{_e(np.dtype(udf.get_preferred_input_dtype()))}</td> </tr> </tbody> </table> """ return f""" <h2>{_e(self.title)}</h2> <h3>General</h3> {general} <h3>Result types</h3> <p>Note: these may vary with different data sets</p> <table> <thead> <th>Name</th> <th>Kind</th> <th>Extra Shape</th> <th>Concrete Shape</th> <th>dtype</th> </thead> <tbody> {rows} </tbody> </table> """ runner_cls = self.executor.get_udf_runner() return _UDFInfo( title=udf.__class__.__name__, buffers=runner_cls.inspect_udf(udf, dataset, roi), ) def map(self, dataset: DataSet, f, roi: np.ndarray = None, progress: bool = False, corrections: CorrectionSet = None, backends=None) -> BufferWrapper: ''' Create an :class:`AutoUDF` with function :meth:`f` and run it on :code:`dataset` .. versionchanged:: 0.5.0 Added the :code:`progress` parameter .. versionchanged:: 0.6.0 Added the :code:`corrections` and :code:`backends` parameter Parameters ---------- dataset: The dataset to work on f: Function that accepts a frame as the only parameter. It should return a strongly reduced output compared to the size of a frame. roi : numpy.ndarray region of interest as bool mask over the navigation axes of the dataset progress : bool Show progress bar corrections Corrections to apply while running the function. If none are given, the corrections that are part of the :code:`DataSet` are used, if there are any. See also :ref:`corrections`. backends : None or iterable containing 'numpy', 'cupy' and/or 'cuda' Restrict the back-end to a subset of the capabilities of the UDF. This can be useful for testing hybrid UDFs. Returns ------- BufferWrapper : libertem.common.buffers.BufferWrapper The result of the UDF. Access the underlying numpy array using the :attr:`~libertem.common.buffers.BufferWrapper.data` property. Shape and dtype is inferred automatically from :code:`f`. ''' udf = AutoUDF(f=f) results: UDFResultDict = self.run_udf( # type:ignore[assignment] dataset=dataset, udf=udf, roi=roi, progress=progress, corrections=corrections, backends=backends, ) return results['result'] def _create_local_executor(self): return DaskJobExecutor.make_local() def close(self): self.executor.close() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close()