def get_dataset(dataset, args):
    if dataset.lower() == 'polar':
        train_dataset = gdata.POLARDetection(split='train')
        val_dataset = gdata.POLARDetection(split='val')
        val_metric = VOCMApMetric(iou_thresh=0.5,
                                  class_names=val_dataset.classes)
    elif dataset.lower() == 'voca':
        train_dataset = gdata.VOCAction(split='train')
        val_dataset = gdata.VOCAction(split='val')
        val_metric = VOCMApMetric(iou_thresh=0.5,
                                  class_names=val_dataset.classes)
    elif dataset.lower() == 'voc':
        train_dataset = gdata.VOCDetection(
            splits=[(2007, 'trainval'), (2012, 'trainval')])
        val_dataset = gdata.VOCDetection(splits=[(2007, 'test')])
        val_metric = VOC07MApMetric(iou_thresh=0.5,
                                    class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        train_dataset = gdata.COCODetection(splits='instances_train2017',
                                            use_crowd=False)
        val_dataset = gdata.COCODetection(splits='instances_val2017',
                                          skip_empty=False)
        val_metric = COCODetectionMetric(val_dataset,
                                         args.save_prefix + '_eval',
                                         cleanup=True)
    else:
        raise NotImplementedError(
            'Dataset: {} not implemented.'.format(dataset))
    return train_dataset, val_dataset, val_metric
def get_dataset(dataset, args):
    if dataset.lower() == 'voca':
        train_dataset = gdata.VOCAction(split='train', augment_box=True, load_box=True)
        val_dataset = gdata.VOCAction(split='val', load_box=True)
        val_metric = VOCMultiClsMApMetric(class_names=val_dataset.classes, ignore_label=-1, voc_action_type=True)
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    return train_dataset, val_dataset, val_metric
예제 #3
0
def get_dataset(dataset, args):
    if dataset.lower() == 'voca':
        val_dataset = gdata.VOCAction(split='test')
    elif dataset.lower() == 'st40':
        val_dataset = gdata.Stanford40Action(split='test')
    elif dataset.lower() == 'hico':
        val_dataset = gdata.HICOClassification(split='all',
                                               preload_label=False)
    else:
        raise NotImplementedError(
            'Dataset: {} not implemented.'.format(dataset))
    return val_dataset