예제 #1
0
 def setUp(self):
     skel = GraphSkeleton()
     skel.load("unittestdict.txt")
     skel.toporder()
     nodedata = NodeData.load("unittestdict.txt")
     self.bn = DiscreteBayesianNetwork(nodedata)
     agg = SampleAggregator()
     agg.aggregate(self.bn.randomsample(50))
     self.rseq = agg.seq
     self.ravg = agg.avg
     self.fn = TableCPDFactorization(self.bn)
     evidence = dict(Letter='weak')
     agg.aggregate(self.fn.gibbssample(evidence, 51))
     self.gseq = agg.seq
     self.gavg = agg.avg
예제 #2
0
 def setUp(self):
     skel = GraphSkeleton()
     skel.load("unittestdict.txt")
     skel.toporder()
     nodedata = NodeData.load("unittestdict.txt")
     self.bn = DiscreteBayesianNetwork(nodedata)
     agg = SampleAggregator()
     agg.aggregate(self.bn.randomsample(50))
     self.rseq = agg.seq
     self.ravg = agg.avg
     self.fn = TableCPDFactorization(self.bn)
     evidence = dict(Letter='weak')
     agg.aggregate(self.fn.gibbssample(evidence, 51))
     self.gseq = agg.seq
     self.gavg = agg.avg
def GenProbTable(network):
    #Generates Generic probability table for a Bayesian Network.
    #Used for initialization of Dyn. Disc. BN
    agg = SampleAggregator()
    r = agg.aggregate(network.randomsample(5000))
    return r
예제 #4
0
nd = NodeData()
skel = GraphSkeleton()
nd.load("../tests/unittestdict.txt")
skel.load("../tests/unittestdict.txt")

# topologically order graphskeleton
skel.toporder()

# load bayesian network
bn = DiscreteBayesianNetwork(skel, nd)

# build aggregator
agg = SampleAggregator()

# average samples
result = agg.aggregate(bn.randomsample(10))

# output - toggle comment to see
#print json.dumps(result, indent=2)

# (8) --------------------------------------------------------------------------
# Learn the CPDs of a discrete Bayesian network, given data and a structure:

# say I have some data
data = bn.randomsample(200)

# and a graphskeleton
skel = GraphSkeleton()
skel.load("../tests/unittestdict.txt")

# instantiate my learner
예제 #5
0
def inference(bn, evidence):
  fn = TableCPDFactorization(bn)
  result = fn.gibbssample(evidence, GIBBS_ITERATIONS)
  agg = SampleAggregator()
  result = agg.aggregate(result)
  return json.dumps(result, indent=2)
예제 #6
0
파일: examples.py 프로젝트: Anaphory/libpgm
nd = NodeData()
skel = GraphSkeleton()
nd.load("../tests/unittestdict.txt")
skel.load("../tests/unittestdict.txt")

# topologically order graphskeleton
skel.toporder()

# load bayesian network
bn = DiscreteBayesianNetwork(skel, nd)

# build aggregator
agg = SampleAggregator()

# average samples
result = agg.aggregate(bn.randomsample(10))

# output - toggle comment to see
#print json.dumps(result, indent=2)

# (8) --------------------------------------------------------------------------
# Learn the CPDs of a discrete Bayesian network, given data and a structure:

# say I have some data
data = bn.randomsample(200)

# and a graphskeleton
skel = GraphSkeleton()
skel.load("../tests/unittestdict.txt")

# instantiate my learner