labels_path = 'reshaped_TIMIT_labels.npy' s_n_components = 64 r_n_components = 100 f0s = [] spectrograms = [] residuals = [] ds = np.load(input_file) ls = np.load(label_file) for i, X in enumerate(ds[:100]): X = X.astype('float64') f0, time_axis = dio(X, fs, period, opt) f0 = stonemask(X, fs, period, time_axis, f0) spectrogram = cheaptrick(X, fs, period, time_axis, f0) mel_spectrogram = melspec(spectrogram, fs, s_n_components) log_mel_spectrogram = np.log(mel_spectrogram) residual = platinum(X, fs, period, time_axis, f0, spectrogram) residuals.append(residual) spectrograms.append(spectrogram) compression_residuals = np.concatenate([r[:100] for r in residuals], axis=0) mel_spectrogram = melspec(spectrograms[0], fs, s_n_components) log_mel_spectrogram = np.log(mel_spectrogram) tf_r = PCA(n_components=r_n_components) tf_r.fit(compression_residuals) residual_matrix = tf_r.components_ reduced_residual = tf_r.transform(residuals[0]) tf_r_mean = tf_r.mean_
f0, time_axis = dio(X, fs, period, opt) f0 = stonemask(X, fs, period, time_axis, f0) spectrogram = cheaptrick(X, fs, period, time_axis, f0) residual = platinum(X, fs, period, time_axis, f0, spectrogram) log_spectrogram = np.log(spectrogram) residuals.append(residual) log_spectrograms.append(spectrogram) log_spectrograms = np.concatenate(log_spectrograms, axis=0) residuals = np.concatenate(residuals, axis=0) s_n_components = 64 r_n_components = 100 print("Calculating compressed spectrogram exmaple") mel_spectrogram = melspec(spectrogram, fs, s_n_components) log_mel_spectrogram = np.log(mel_spectrogram) print("Calculating decomposition of residual subset") tf_r = PCA(n_components=r_n_components) tf_r.fit(residuals) residual_matrix = tf_r.components_ reduced_residual = tf_r.transform(residual) tf_r_mean = tf_r.mean_ h5_file = tables.openFile(h5_file_path, mode='w') print("Creating dataset at %s from directory %s" % (files_dir, h5_file_path)) compression_filter = tables.Filters(complevel=5, complib='blosc') residual_matrix_storage = h5_file.createCArray(h5_file.root, 'residual_matrix', tables.Float32Atom(),
f0, time_axis = dio(X, fs, period, opt) f0 = stonemask(X, fs, period, time_axis, f0) spectrogram = cheaptrick(X, fs, period, time_axis, f0) residual = platinum(X, fs, period, time_axis, f0, spectrogram) log_spectrogram = np.log(spectrogram) residuals.append(residual) log_spectrograms.append(spectrogram) log_spectrograms = np.concatenate(log_spectrograms, axis=0) residuals = np.concatenate(residuals, axis=0) s_n_components = 64 r_n_components = 100 print("Calculating compressed spectrogram exmaple") mel_spectrogram = melspec(spectrogram, fs, s_n_components) log_mel_spectrogram = np.log(mel_spectrogram) print("Calculating decomposition of residual subset") tf_r = PCA(n_components=r_n_components) tf_r.fit(residuals) residual_matrix = tf_r.components_ reduced_residual = tf_r.transform(residual) tf_r_mean = tf_r.mean_ h5_file = tables.openFile(h5_file_path, mode='w') print("Creating dataset at %s from directory %s" % (files_dir, h5_file_path)) compression_filter = tables.Filters(complevel=5, complib='blosc') residual_matrix_storage = h5_file.createCArray(h5_file.root, 'residual_matrix', tables.Float32Atom(), shape=residual_matrix.shape,